UC-NRLF
 B 4 251 244

7140

STAR - GUIDE

IATIMER CLARK F.R.A.S. AND

HERBERT SADIER F.R.A.S.

THE
STAR-GUIDE
s.

THE

S T A R - G U I D E

\author{
A LIST OF THE
 MOST REMARKABLE CELESTIAL OBJECTS
 VISIBLE WITH SMALL TELESCOPES
 WITH
 THEIR POSITIONS
 FOR EVERY TENTH DAY IN THE YEAR
 AND
 ```
OTHER ASTRONOMICAL INFORMATION

```
}

BY
LATIMER C LARK, FR.A.S.
AND HERBERT SADLER, F.R.A.S.

LONDON
MACMILLAN AND CO.
1886

PRINTED BY SPOTTISWOODE AND CO., NEW-STREET SQUARE LONLON

\section*{INTRODUCTION.}

The first portion of this little work is intended primarily to serve as an introduction to the sidereal portion of 'Celestial Objects for Common Telescopes,' the well-known work of the late deeply regretted Prebendary Webb, and is designed for the use of those who possess small telescopes of from two to four inches aperture and upwards, by reminding them what objects to look for at each period of the year, and where to look for them. Many amateurs who are just commencing the study of Astronomy experience some difficulty in the selection of those objects, out of the countless number in the heavens, which are best suited for observation with small telescopes, and are apt to strain their eyes and waste their time in fruitless endeavours to catch faint nebulæ or to separate difficult double stars, which can only really be observed with much larger telescopes than most beginners usually possess. It is hoped, therefore, that to such, a carefully selected list, on a definite plan, excluding all objects which are beyond the grasp of small telescopes, and including nearly all those which can be profitably examined with instruments of from two to three inches of aperture, may be of use. With this view a list of nearly six hundred of the most interesting and beautiful objects visible in the northern heavens with instruments of this description, has been arranged in a tabular form in order of Right Ascension, which the authors hope will be found to contain nearly every double star between the North Pole and \(15^{\circ}\) South Declination, which can be seen easily with an achromatic of small aperture. The positions and times of transit are given for each tenth day in the year. With very few exceptions no double star
has been inserted the brightest component of which falls below the seventh magnitude-the magnitude of the smallest of the satellites of Jupiter - or the fainter of which is not brighter than a tenth magnitude star, or any pairs which are too close to be conveniently seen in a telescope of small size. No red star has been included the colour of which cannot be seen, or any nebula or cluster which cannot conveniently be observed with such an instrument.

In the first column of the following list of objects visible with small telescopes the name of the star is given ; all those to which Bayer assigned a Greek letter, or those numbered and catalogued by Flamsteed, Bode, or Piazzi, being designated by such letter or number. Flamsteed's numbers precede the name of the constellation to which they refer, e.g. 77 Pegasi ; but as all Bayer's lettered stars have also numbers assigned to them by Flamsteed, the latter have been omitted. Piazzi's are numbered according to the hour of Right Ascension in which they happened to fall in the year 1800, e.g. P. iii. 98 (Eridani) ; while Bode's numbers follow the name of the constellation, as Coronæ I. In one or two cases the star has been entered according to its number in the catalogue published by the British Association, as B. A. C. 352 (Andromedæ). In order to avoid all unnecessary technicalities, where a star, either from its comparative faintness or for some other reason, has failed to receive a Greek letter or one of Flamsteed's or Piazzi's numbers, it has been entered simply as a red star or pair in such and such a constellation. Thus the seventh object in the list is entered as 'Pair in Cassiopeia,' with a Right Ascension of \(23^{\mathrm{h}} 55^{\circ} 5^{\mathrm{m}}\), and a North Declination of \(59^{\circ} 43^{\prime}\). The principal star of this pair is known to astronomers as A.Oe \(1.26,287\) (or O. Arg. N. 26,287), meaning that it is number 26,287 in a catalogue of stars between \(45^{\circ}\) and \(80^{\circ}\) North Declination, whose places were determined by Argelander, and that the catalogue was edited by Oeltzen, in the third series of the Annals of the Vienna Observatory, from which we have deduced its apparent place in the list for January 1886. As a pair it is termed \(O \Sigma \Sigma\left(\right.\) or \(\left.O \Sigma^{2}\right) 254\), which refers to its number, 254 , in a catalogue of double stars observed by O. Struve. Such details, however, are out of place in a list like the present. In the same manner nebulæ
and clusters have been entered as 'Cluster in Cepheus,' ' Nebula in Cetus,' \&c., without giving their numbers in the catalogues of Messier, Sir W., or Sir J. Herschel.

The second column is headed 'Visible,' and is simply intended to show observers at a glance during what months of the year the several objects in the lists may be most conveniently observed.

The third and fourth columns contain the Right Ascension and Declination of the objects, given to the nearest tenth of a minute of time in Right Ascension and the nearest minute of arc in Declination, and reduced to January I, 1886. All the star places throughout the book have been brought up to this epoch.

The next four columns contain the sidereal time at 9 P.M. on the ist, IIth, 2 ist, and last day of every month, and the mean time of transit at Greenwich of every object on those days. Thus the list for each month includes nearly fifty objects which pass the meridian at convenient hours for observation. The observer, however, is by no means confined to the list for each month alone, or to the southern part of the heavens. He may often desire to examine objects in the eastern skies, which may be found, not in the list for the month, but in the lists for the next following month ; or he may desire to observe western stars, which will be found in the preceding months. These lists should, therefore, constantly be referred to. The stars transit every day \(3^{\mathrm{m}} 55^{\circ} 91^{\text {s }}\) (or say 4 minutes) earlier than on the preceding day. A star which souths at ten to-night must, therefore, have southed two hours later a month ago, and will south two hours earlier a month hence. Remembering this, and looking at the position of the star, we can easily judge which list to consult. Suppose that on October 20 we desire to observe certain stars in the western heavens. We know from their position that they will be found in the list of stars some two or three months before; we therefore search the July and August lists, and adding, say, 3I days for August, 30 for September, and 20 for October, we find the interval since July 31 , to be 8 I days. Allowing \(3^{\mathrm{m}} 5^{5}\) per diem for accelcration, \({ }^{1}\) we get \(5^{\mathrm{h}} 18^{\mathrm{min}}\) to be subtracted from the times given on July 3I, and

\footnotetext{
\({ }^{1}\) For the convenience of reckoning a table of these accelerations will be found at page 26.
}
this will give us the time of southing of all the stars in the July list which are still visible to us. Similarly, for eastern skies, we know that the stars will south at convenient hours some two or three months hence, and will be found probably in the January list. We count, therefore, 72 days to January 1 , and adding \(4^{\mathrm{h}} 43^{\mathrm{ml}}\) to any of the stars in that list, we get their time of southing this evening. Before observing it is convenient to take out these times from the table, and to write them (in an abbreviated form) on a card. Thus for October 20 we have-
\begin{tabular}{|c|c|c|c|c|c|}
\hline List of Stars & Interval in Days & Time to be
Subtracted & List of Stars & Interval in Days & Time to be Added \\
\hline July 31. & 81 & \(\begin{array}{cc}\text { h. } & \text { m. } \\ 5 & 18\end{array}\) & November 1 . & 11 & \(\begin{array}{ll}\text { h. m. } \\ 0 & 43\end{array}\) \\
\hline August 31 & 50 & \(\begin{array}{ll}3 & 17\end{array}\) & December 1 . & 41 & 241 \\
\hline September 30 & 20 & 19 & January I & 72 & 443 \\
\hline
\end{tabular}

We are now in a position to find instantly the time of transit of any object in any of the lists from July to January. In making these notes the observer of course includes at the same time the correction (if necessary) due to his difference in longitude. If his station be westward of Greenwich, he must subtract the correction from the left hand column and add it to the right, and vice versî.

The next, or ninth, column contains the distances of the double stars, measured from centre to centre of the stars, and expressed in seconds and tenths of a second of arc. The succeeding column contains the position angle, or the angle of inclination to the meridian, of the smaller star as referred to the larger one of the pair. The following diagram, in which the arrow indicates the direction of motion through the field, will serve to explain the method of expressing position angles at present adopted. Up to about 1820 , it was usual to reckon by quadrants, i.e. \(10^{\circ} \mathrm{nf}\) answered to \(80^{\circ}\) in our present mode of reckoning, \(10^{\circ} s f\) to \(100^{\circ}\), \(10^{\circ} s p\) to \(260^{\circ}\), and \(10^{\circ} n p\) to \(280^{\circ}\). It is, perhaps, as well to remind observers that the present mode of reckoning position angles is not that used in the prediction of occultations in the 'Nautical Almanac,'

\footnotetext{
\({ }^{1}\) For the convenience of reckoning a table of these accelerations will be found at page 26.
}
where the initial point is taken at the top, or south, and the angles are reckoned round towards the right hand in the direction of the

revolution of the hands of a watch, \(180^{\circ}\) being at the north, or bottom. Great care has been taken in the selection of the measures in columns nine and ten, and the latest and best ones published up to the end of November 1885 have been given where possible. In the cases of binaries of quick revolution and stars with large proper motion, the position angles and distances have usually been roughly computed for the season in 1886 at which they appear in the lists where no very recent measures could be obtained of them by practised observers.

The eleventh column contains the magnitudes of the stars. In view of the great and, to beginners, most perplexing differences in the values assigned to the same star in the scales used by different astronomers, it has been thought well to adhere to one scale throughout the book, and for this purpose W. Struve's has been selected, as it is the one almost universally used by the great double star observers on the Continent and in America. The wellknown English observer, Admiral Smyth, used a scale of his own, nearly agreeing with Sir John Herschel's, for the faint stars, and for the brighter he usually adopted the magnitudes assigned to the stars by Piazzi in his Palermo catalogue, estimating the magnitude of the
fainter component by a comparison of its light with that of the larger star, as given by Piazzi ; but where Piazzi gives both components of a double star Smyth usually adopted his magnitude of both. The following little table, which is copied from one in the English Mechanic for March 24, 1882, is the result of a direct collation of Smyth's magnitudes with Struve's, the magnitudes in Smyth above 9.5 being generally assumed from Piazzi, when the stars are found in the catalogue of that astronomer :-
\begin{tabular}{|c|c|c|c|c|c|}
\hline Smyth
Mag.
9.5
10
11
12 & \(=\)
\(=\)
\(=\) & \[
\begin{gathered}
\text { Struve } \\
\text { SNaze } \\
8.78 \\
9.18 \\
10.18 \\
10.10 \\
10.17
\end{gathered}
\] & \[
\begin{gathered}
\text { Smythy } \\
\text { Mag. } \\
13 \\
144 \\
15 \\
16
\end{gathered}
\] & & \begin{tabular}{l}
Struv \\
Mag \\
\(10 \cdot 65\) \\
\(10 \cdot 36^{1}\) \\
10.99
\end{tabular} \\
\hline
\end{tabular}

The following comparison by Sir John Herschel of his own magnitudes with those of Struve is copied from his table in vol. 38 of the ' Memoirs of the Royal Astronomical Society.' It must, however, be only considered to apply to his earliest catalogues of double stars, as he himself observes that the magnitudes in his later catalogues show a tendency to creep up in the scale, i.e. a 19th or 20th magnitude in his first catalogue would probably only be rated as a 16 th in his sixth catalogue ; and it will be found that a star called by him a 20 th magnitude in his later observations corresponds more nearly with 13.0 than \(12{ }^{\circ} 0\) in Struve's \({ }^{2}\) scale. The magnitudes down to the seventh are fairly accordant.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline H. & & \(\Sigma\) & H. & & \(\Sigma\) & H. & & \(\Sigma\) \\
\hline Mag. & & Mag. & Mag. & & Mag. & Mag. & & Mag. \\
\hline 8 & \(=\) & \(7 \cdot 30\) & 11.5 & \(=\) & \(9 \cdot 60\) & 15 & \(=\) & 10.87 \\
\hline \(8 \cdot 5\) & \(=\) & \(7 \times 70\) & 12 & = & \(9 \cdot 80\) & 16 & \(=\) & II•13 \\
\hline 9 & \(=\) & 8.10 & 12.5 & = & 10.00 & 17 & = & I I \(3^{8}\) \\
\hline \(9 \cdot 5\) & = & \(8 \cdot 50\) & 13 & \(=\) & 10.18 & 18 & = & II 61 \\
\hline 10 & \(=\) & \(8 \cdot 80\) & 13.5 & \(=\) & \(10 \cdot 36\) & 19 & \(=\) & I 1 82 \\
\hline \(10 \cdot 5\) & \(=\) & 9'10 & 14 & \(=\) & 10.54 & 20 & \(=\) & 12.00 \\
\hline 11 & \(=\) & \(9 \cdot 30\) & 14.5 & \(=\) & 10.71 & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) See 'English Mechanic' supra.
\({ }^{2}\) W. Struve's name is usually conventionally expressed by the Greek capital letter \(\mathbf{\Sigma}\), and his son's, O. Struve, the present director of the Imperial Russian Observatory at Pulkova, by CE.
}

In the present work the magnitudes of many of the brighter stars have been inserted from the Oxford photometrical determinations in vol. 47 of the 'Memoirs of the Royal Astronomical Society,' \({ }^{1}\) and the others have been taken from the great work of the late Baron Dembowski, 'Misure Micrometriche di Stelle Doppie e Multiple,' which has lately been edited by Schiaparelli and O. Struve, in nearly every case where the stars are to be found in that work. In other cases they have been taken from the micrometrical observations of Mr. Burnham. The magnitudes of the red stars have been taken from Birmingham's 'Red Star Catalogue, and other sources. In the case of clusters the magnitudes of the brightest and faintest stars in each cluster have been set down.

In the last column are inserted the colours of the stars, which in the case of the double stars have been almost always taken from Dembowski. The discordances in the colours assigned by different astronomers to various stars, even where their observations have been made at the same epoch, are so very marked, that it has been thought advisable that these determinations should rest as far as possible on the authority of one observer only. This column contains also a few brief remarks on the character of some of the objects, which are supplemented in certain cases of interest by concise notes at the foot of each page. A considerable margin has been left for the observer's own notes. A list of about two hundred objects which can be seen with refractors of from four to seven inches aperture, has been added for the convenience of those amateurs who may possess telescopes of this size. A certain proportion only are visible, of course, with but four inches of aperture, but all should be seen with seven. Considerable care has been taken in the selection of the most interesting and beautiful objects within the grasp of telescopes of this size for the list, which is arranged in substantially the same way as the preceding one; the times of transit and the column containing the colours and remarks have, however, been omitted.

\footnotetext{
\({ }^{1}\) The Uranometria Nova Oxoniensis was published too late to enable us to make use of the determinations of magnitude which it contains.
}

\section*{Test Objects.}

The list of test-objects contains two hundred and fifty stars, which have been selected as tests of the quality of refracting telescopes of from two to seven inches aperture. The stars have been divided into three kinds of tests, viz. dividing tests, defining tests, and space-penetrating tests. Twelve double stars have been arranged, in descending order of difficulty, as tests of the separating power of telescopes of the aperture given. The first star of these twelve should be easily separated with the aperture employed, as high a magnifying power as the telescope and the air will bear being used, while the last three or four stars will be found to be just at the limit of the separating power of the aperture, this being expressed by the fraction \(\frac{4 \cdot 56^{\prime \prime}}{a} .{ }^{1}\) These are followed by a list of six pairs arranged in the same order, which are intended to serve as tests of the defining power of the telescope, its freedom from spherical aberration, and of the perfection of its figure ; each pair consisting of a bright star and a faint and comparatively close companion. The last twelve stars (arranged, as the others, approximately in order of difficulty) are designed to serve as tests of the light-grasping power of the instrument and the acuteness of the observer's eye.

The list of the radiant points of some of the most marked showers of shooting stars gives the date of each shower, the Right Ascension and Declination of the radiant point, and the Greenwich mean time of its rising and southing.

\section*{Lunar Craters.}

The lists of the approximate longitudes and latitudes of over one hundred lunar craters, arranged alphabetically and in order of longitude, beginning at the western limb, is intended to facilitate the employment of the table giving the position of the Lunar

\footnotetext{
\({ }^{1}\) Dawes, Memoirs of the Royal Astronomical Society, vol. xxxv. p. 158. Dallmeyer
} preferred \(\frac{4^{\circ} 33^{\prime \prime}}{a}, \quad \alpha=\) aperture of telescope in inches.

Terminator at midnight on each day of the year. The number in ( ) immediately following the name of each formation refers to the corresponding number on the map of the moon, in the fourth edition of 'Celestial Objects for Common Telescopes,' the numbers enclosed in [ ] denoting formations near those bearing the number assigned to them by Mr. Webb. The figures i , ii, iii, iv refer to the quadrant in which the crater is situated.

The table giving the position of the Lunar Terminator at midnight for every night in the year gives the selenographical longitude of the point where the terminator (or boundary between light and darkness) crosses the moon's equator (which it does nearly at right angles) at that time. As the terminator moves towards the east at the rate of \(30.5^{\prime}\) (approximately) per hour, \({ }^{1}\) we can easily find its position at any other time ; e.g. by the table we find the longitude of the terminator at midnight on March 8, 1886 , to be \(49^{\circ} 26^{\prime}\) west longitude, and we wish to ascertain what will its position be at 8 A.M. the next morning (March 9)? Subtracting \(4^{\circ} 4^{\prime}\) ( \(30^{\circ} 5^{\prime} \times 8\) ), as the terminator moves towards the east, we find the longitude of the terminator at 8 in the morning on March 9 is \(45^{\circ} 22^{\prime}\) west. In the same way we wish to know when the crater Linné will be on the terminator in January 1886. Turning to the alphabetical table of the longitudes and latitudes of the craters, we find the longitude of Linné to be \(11^{\circ} 33^{\prime}\) west, and we find by the tables giving the position of the Lunar Terminator that the moon's terminator was in \(10^{\circ} 44^{\prime}\) west at midnight on January II ; the difference is \(0^{\circ} 49^{\prime}\) west, or the time of sunrise on Linné will be about \(10^{\mathrm{h}} 22^{\mathrm{m}}\) P.M. (that is, 12 hours less \(49 \times 2\) min.) Similarly, we find that the longitude of the evening terminator at midnight on January 26 was \(8^{\circ} 9^{\prime}\), differing \(3^{\circ} 24^{\prime}\) from that of Linné, so that sunset on Linné will take place about \(5^{\mathrm{h}} 20^{\mathrm{m}}\) P.M. on that evening. Conversely, we observe that the longitude of the evening terminator at midnight on February 11, 1886, is given in the tables at \(6^{\circ} 15^{\prime}\) east, and on referring to the list of craters arranged in order of longitude, we find Mösting, Moretus, and Archimedes A to be near the terminator at that time, being numbers 211, 262, and a

\footnotetext{
\({ }^{1}\) Roughly speaking, \(I^{\circ}\) for two hours, or \(I^{\prime}\) for two minutes,
}
crater very near 120 on Webb's map. On referring to that map, and drawing an imaginary line through these craters, we are enabled to see what other formations are on the terminator about that hour.

\section*{Variable Stars, \&c.}

A list of the maxima and minima of twelve remarkable variable stars, with their places, and a table showing the observable heliocentric maxima of Algol and of the somewhat similar variable star \(\delta\) Libræ for 1886, will, it is hoped, be found of use to those amateurs who are interested in the study of such phenomena.

A short account of the periodical comets expected in 1886 and of those which, though discovered in 1885 , pass their perihelia in 1886, closes the work.

\section*{Precession of the Equinoxes.}

Owing to precession, the apparent places of the stars alter continually from year to year, both in Right Ascension and in Declination; the change is fortunately very small, and may generally be neglected, as even after several years it is seldom sufficient to prevent a sfar being found in the field of the telescope. Its amount varies in different parts of the heavens, and the formulæ for its computation are somewhat complex, but the tables given below will enable the observer to correct the places of the stars for this quantity without any very serious error, except in the case of circum-polar stars.

The precession of the Equinoxes is caused by a slow gyratory or twisting motion of the pole of the earth round the pole of the Ecliptic, resembling the movement of a spinning top just before it is going to fall. One twist of the axis occupies about 25,700 years, and during this time it carries the position of the vernal Equinox or first point of Aries backwards completely round the Ecliptic, in a direction contrary to the apparent motion of the sun, thereby continually increasing the apparent Right Ascension of all the heavenly bodies, and also affecting their Declinations; the effect
on our reckoning of time is the same as if we had gained one day in 25,700 years, or \(\frac{1}{25 \frac{1}{700}}\) of a day per annum. This amounts to about 3 . I seconds, which is about the annual amount of precession for stars near the Equator.

The effect of precession in Right Ascension is always additive (except in the case of a few stars very near the poles of the Ecliptic). Its amount varies with the Declination of the stars and with their Right Ascension, and is roughly given in the following table :-

Annual Value of Precession in Right Ascension.
\begin{tabular}{|c|c|c|c|c|}
\hline Declination & From \(0^{\text {h }}\) to \(6^{\text {h }}\) Right Ascension & From \(6^{\text {h }}\) to \(12^{\text {h }}\) Right Ascension & From \(12^{\text {h }}\) to \(1^{8 h}\) Right Ascension & From 18 \({ }^{\text {h }}\) to \(24^{\text {h }}\) Right Ascension \\
\hline \(20^{\circ}\) South & \(3^{\text {a }}\) - 1 decreasing to \(2^{8 .} 6\) & 6 increasing to \(3^{8 *} \mathrm{I}\) & I 1 increasing to \(3^{\text {s }}\) & 6 decreasing to \(3^{8 *} 1\) \\
\hline Equator & \(3^{*} 1\) secs. & \(3^{1} 1\) secs. & \(3^{1} 1\) secs. & \\
\hline \(20^{\circ}\) North & \(3^{3 \cdot} 1\) increasing to \(3^{8.6}\) & 6 decreasing to \(3^{\text {a }} \mathrm{r}\) & I decreasing to \(2^{* *} 6\) & 6 increasing to \(3^{3 \cdot 1}\) \\
\hline \(40^{\circ}\) North & \(3^{50} \mathrm{I}\) increasing to \(4^{80} 2\) & 2 decreasing to \(3^{3 *} 1\) & 8* \(I\) decreasing to \(1^{80} 91\) & 9 increasing to \(3^{* *} 1\) \\
\hline \(50^{\circ}\) North & \(3^{30} I\) increasing to \(4^{80} 7\) & \(4^{8 \cdot} 7\) decreasing to \(3^{8 \cdot 1}\) & \(3^{89} I\) decreasing to \(1^{30} 5\) & 5 increasing to \(3^{8 \times 1}\) \\
\hline \(60^{\circ}\) North & \(3^{8 \times 1}\) increasing to \(5^{50} 4\) & \(5^{3 \cdot} 4\) decreasing to \(3^{\circ *} 1\) & \(3^{* \cdot 1}\) decreasing to \(0^{8 \cdot 8}\) & 8 increasing to \(3^{5 \cdot 1}\) \\
\hline
\end{tabular}

The precession in Declination is additive from 18 hours Right Ascension to 6 hours, and subtractive from 6 hours to 18 hours. It attains its maximum, about 20 seconds of arc per annum, with objects situated at 12 hours Right Ascension and 24 hours Right Ascension, and falls to a minimum of zero at 6 hours and 18 hours. The following table will give an idea of the change produced by it, but

Annual Value of Precession in Declination.

it must be remembered that the table refers to stars with North Declination, and that an addition to the Declination of a northern star corresponds to a subtraction from that of a southern star, and
vice versâ. It will be observed that at the utmost it can only change the declination of any object by \(20^{\prime \prime}\) per annum, so that by the year 1892 the change will only have amounted to \(2^{\prime}\), or about three times the apparent diameter of Jupiter when at opposition.

\section*{Future Use of the Tables.}

The times of transit of all the objects in this book are given for the year 1886, but by a very simple addition they are equally available for all succeeding years. We have only to add one minute for every year, except at leap-years, when we make a deduction. For example :-
1887. Add I minute to the times given.
1888. Add 2 minutes before February 28 ; after that date deduct 2 minutes.
1889. Deduct I minute.
1890. Add o minute.
1891. Add I minute.

It will be perceived that, although for convenience we abruptly add I minute on January I, the gain is really a continuous one throughout the four years preceding the deap-year. At leap-year we suddenly lose this 4 minutes (or rather \(3^{m} 56^{3}\) ) owing to the introduction of February 29.

It was originally intended that this work should be published in an annual form under the name of 'Clark's Star Guide,' as a companion volume to Mr. Latimer Clark's annual Transit Tables. As the work progressed it was found difficult to condense the matter satisfactorily into so small a page, and it was therefore thought preferable to issue it in the present more permanent form. The tables giving the daily position of the Lunar Terminator and other matters will be continued in future editions of Clark's Transit Tables.

A LIST OF
THE MOST REMARKABLE CELESTIAL OBJECTS

VISIBLE WITH SMALL TELESCOPES,


JANUARY

JANUARY（Mean Time of Transit at Greenwich）．
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline 免 &  & \\
\hline  & \(\bigcirc\) & \\
\hline 㖸 & \(=1\) & \\
\hline － & \begin{tabular}{l}
 \\

\end{tabular} & \\
\hline N & \begin{tabular}{l}
 \\

\end{tabular} & － \\
\hline － &  ざナ & \\
\hline － &  &  \\
\hline ¢ &  &  \\
\hline \(\stackrel{\text { d }}{\sim}\) & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline \[
\frac{8.4 .0}{5}
\] &  &  \\
\hline  &  &  \\
\hline
\end{tabular}
FEBRUARY (Mean Time of Transit at Greenwich).


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 2 & 11 & 21 & 31 & Distances & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & \(\bigcirc \quad 1\) & \begin{tabular}{l}
h. m . \\
\(73^{8}\)
\end{tabular} & h. m. & h. \(m\). 857 & h. m. 937 & 11 & 0 & & \\
\hline Cluster in Perseus . & Oct.-Mar. & 4 12*3 & \(+495^{8}\) & 5.35 & 455 & 4 16 & 337 & - & - & \(6 \cdot 5-10\) & Radiated. Io' diam. ( \\
\hline Pair in Perseus & Nov.-Mar. & 4 16.9 & \(+343\) & 539 & 50 & 420 & 34 I & 19.6 & 61 & \(6 \cdot 3,7{ }^{\circ} 5\) & White, Fine field. \\
\hline 62 Tauri & Nov.-Mar. & 4 17 \({ }^{\circ}\) & \(+242\) & 539 & 50 & 421 & 341 & \(28^{\circ} 9\) & 290 & \(6^{\circ} 0,8^{\circ}\) & White, blue. Fine field. \\
\hline \(\kappa^{2} \kappa^{2}\) Tauri & Nov.-Mar. & 418.6 & \(+220\) & 541 & 52 & 422 & 343 & \(340 \cdot 4\) & 173 & \(4^{\circ} 6,5^{\circ} 7\) & White, ashy yellow. \\
\hline 88 Tauri & Nov.-Mar. & \(429^{\circ} 4\) & \(+956\) & 552 & 512 & 433 & 354 & \(69^{\circ} 2\) & 299 & \(4^{\circ} 0,7^{\circ} 5\) & White, reddish yellow. \\
\hline Pair in Orion & Dec - Mar. & \(454^{\circ} 6\) & \(+327\) & 617 & 537 & 458 & 4 I9 & \(21^{\circ} 0\) & 260 & \(6^{\circ} \mathrm{O}, 7^{\circ} \mathrm{O}\) & White, deep green. \\
\hline P. iv. 278 Orionis . & Dec.-Mar. & \(45^{\circ} 1\) & + 127 & 618 & 539 & 50 & 420 & \(14^{\circ} \mathrm{I}\) & 49 & \(6 \cdot 3,77\) & White, yellow. \\
\hline Pair in Camelopardus & Oct. - Apr. & \(5 \quad 177\) & \(+6942\) & 624 & 544 & 55 & 426 & \(5{ }^{\circ} 3\) & 221 & \(7^{\circ} \mathrm{O}, 8^{\circ} 2\) & Yellow, blue. \\
\hline \(\rho^{1}\) Orionis * & Dec.-Mar. & \(5 \quad 73\) & + 244 & 629 & 550 & 5 II & 431 & \(6 \cdot 8\) & 65 & \(4 \cdot 8,8 \cdot 5\) & Deep yellow, blue (2). \\
\hline 23 Orionis & Dec.-Mar. & 5 16*8 & \(+326\) & 639 & 60 & 520 & 4 4I & \(3^{\prime}\) I & 28 & \(5^{\circ} \mathrm{I}, 6{ }^{\circ} 6\) & White, deep blue. \\
\hline 118 Tauri & Nov.-Mar. & \(522 \cdot 2\) & \(+253\) & 644 & 65 & 526 & 446 & 47 & 199 & \(5.5,6 \cdot 4\) & White, green (3). \\
\hline Nebula in Taurus & Nov.-Mar. & 527.6 & +2156 & 650 & 6 10 & \(53^{1}\) & 452 & - & - & & Faint, \(5 \frac{1^{\prime}}{}\) by \(3 \frac{1^{\prime}}{}(4)\). \\
\hline Cluster in Auriga & Nov.-Mar. & \(528 \cdot 7\) & \(+344\) & 651 & 6 II & 532 & 453 & - & - & \(8 \cdot 0-11\) & \(20^{\prime}\) diam. ; star-shaped. \\
\hline ¢ Orionis & Dec.-Mar. & \(529^{\circ} 8\) & -60 & 652 & 613 & 533 & 454 & 11.4 & 142 & \(3^{\circ} 7,7^{\circ} 7\) & Yellow, blue (5). \\
\hline Nebulæ in Orion & Dec.-Mar. & \(540 \% 9\) & 00 & \(7 \quad 3\) & 624 & 544 & 55 & & & & Double nebula, \(7^{\prime}\) diam. (6). \\
\hline a Orionis (Betelgeux) & Dec.-Mar. & 5490 & \(+723\) & 7 II & 632 & \(55^{2}\) & 5 I3 & 1747 & 152 & I'0, \(8^{\circ} 9\) & Topaz, blue (7). \\
\hline 4 A Aurigæ . & Nov.-Apr. & \(63^{\circ}\) & \(+4844\) & 725 & 646 & 66 & 527 & \(7{ }^{\circ} 9\) & 354 & \(5^{\circ 8}, 6^{\cdot 7}\) & White, ashy (8). \\
\hline 8 Monocerotis & Dec.-Mar. & 6 17 \({ }^{\circ} 7\) & + 439 & 740 & 70 & 621 & 542 & \(13 \cdot 7\) & 27 & \(4^{\circ} 2,6 \cdot 2\) & Golden, lilac (9). \\
\hline 20 Geminorum & Dec.-Apr. & \(625^{\prime 6}\) & +1752 & \(74^{8}\) & 78 & 629 & 550 & \(19^{\circ} 9\) & 210 & \(6^{\circ} \mathrm{I}, 7^{\circ} \mathrm{O}\) & White, greenish white. \\
\hline Red star in Auriga & Dec.-Apr. & \(628 \cdot 7\) & \(+3^{8} 3^{2}\) & \(75^{1}\) & 7 II & 632 & 553 & - & - & \(6^{\circ} 0\) & Fine red (ro). \\
\hline \(\nu^{1}\) Canis Majoris . & Dec. - Mar. & 6314 & \(-1834\) & 753 & 714 & 635 & 555 & 17.5 & 261 & \(6^{\circ} 0,7{ }^{\circ} 5\) & Pale red, grey. \\
\hline \(3^{8}\) Geminorum . . & Dec.-Mar. & \(648 \cdot 2\) & +13 19 & 810 & 731 & 651 & 6 12 & \(6^{\circ} 3\) & I62 & \(5^{\circ} 4,7 \cdot 8\) & White, deep rose (II) \\
\hline P. vi. 301 Lyncis . & Dec.-Apr. & \[
656 \cdot 6
\] & +5256 & 818 & 739 & 70 & 620 & \(3^{\prime 2}\) & I56 & \(6 \cdot 5,6 \cdot 7\) & White. \\
\hline Cluster in Monoceros & Dec.-Mar. & \[
657 \cdot 3
\] & -8II & 8 I9 & 740 & 70 & 621 & - & - & \(8^{\circ} \mathrm{O}, 12^{\circ} \mathrm{O}\) & \(30^{\prime}\) diam. Brilliant mass ( 12 ). \\
\hline \multicolumn{5}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
(r) Like a badge of knighthood. Contains pair \(6.5,7^{\circ} 0 ; 327^{\circ}: 74^{\prime \prime} 6\); red, white \\
(2) A coarse pair in field, s. \(p\). \\
3) Common proper motion. \\
(4) Messier 1, the so-called 'Crab ' nebula, non-resolvable. \\
(5) An 8.2 mag. at \(102^{0.8}: 49^{\prime \prime \cdot} 8\), reddish. Fine field. \\
(6) Wispy, with two nuclei, enclosing faint pair.
\end{tabular}}} & & \multicolumn{6}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
(7) Has been thought variable. \\
(8) Moving together through space. \\
(9) In a fine scattered group. \\
(Io) Struve calls it 'coloris egregie rubicundi, pæne rosei ;' several pairs near. \\
(ii) Probably binary, and common proper motion. \\
(12) Contains a red star, 8.5 mag. in the southern portion.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
MARCH
MARCH (Mean Time of Transit at Greenwich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & \[
\begin{aligned}
& \text { Dis- } \\
& \text { tances }
\end{aligned}
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline & & & \({ }^{\circ}-1\) & h. m. & \[
\begin{gathered}
\text { h. } \\
8 \\
\mathrm{I} 8 .
\end{gathered}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 857
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 937
\end{aligned}
\] & \(\underline{\prime \prime}\) & - & & \\
\hline Cluster in Monoceros & Dec.-Apr. & \(79^{\text {91 }}\) & -10 & 831 & 752 & 712 & 633 & & & 6-1 & arge scattered cluster ( I ). \\
\hline \(\delta\) Geminorum & Dec.-Ap & 7 13'3 & +22 II & 835 & 56 & 716 & 637 & 71 & 205 & 3.5, 8.9 & Yellow, turquoise. \\
\hline 63 Geminorum & Dec.-Apr. & 7209 & +2141 & 843 & 83 & 724 & 645 & \(44^{\circ} 6\) & 324 & \(5{ }^{\circ} 5,9{ }^{\circ} 5\) & Orange, reddish purple (2). \\
\hline a Geminorum (Castor) & Dec.-Apr. & 7273 & +32 & 849 & 8 10 & 730 & 651 & 5.8 & 232 & \(3^{\circ} \mathrm{O}, 4^{\circ} \mathrm{O}\) & Grnish. yellow, grnish. yellow (2). \\
\hline uster in Gemini * & Dec, -Ap & \(73{ }^{1} 6\) & +2151 & 853 & 814 & 735 & 655 & - & - & 10'0-12.0 & Fai \\
\hline a Canis Minoris (Procyon). & Dec.-Apr & \(733 \cdot 3\) & +
+
+ & 855 & 816 & 7
7 & 657 & 350 & 80 & \(x\) O, 8.5 & Yellowish white, blue (4). \\
\hline Cluster in Argo Navis & Jan.-Apr. & 736.6 & -14 33 & \(85^{8}\) & 819 & 740 & 7 - & - & - & 9.5 & Visible to naked eye. \(30^{\prime}\) diam. \\
\hline 2 Argas & Jan.- Apr. & \(740 \cdot 2\) & -1 & 92 & 823 & 743 & 74 & 16.8 & 339 & 5'9, 6.7 & Both white. \\
\hline Cluster in Argo Navis & Jan.-Apr. & \(8 \quad 53\) & 12 & 927 & 848 & & 729 & - & & 5-10 & \(20^{\prime}\) by \(122^{\prime}\) (5). \\
\hline \(\zeta\) Cancri & Jan.-Apr & .6 & +18 0 & 927 & 48 & & & \(5 \cdot 4\) & 127 & \(5^{\circ} 8,6 \cdot 5\) & White, yellow. \\
\hline Pair in Lynx & Jan.-May & \(817{ }^{\circ}\) & +4222 & 939 & 859 & 820 & 741 & \(76 \cdot 5\) & 168 & 6\%, \(8^{\circ} \mathrm{O}\) & Orange, blue. \\
\hline \(\phi^{2}\) Cancri & Jan.-Apr. & 8190 & +27 & 941 & & 823 & 7 & 4.8 & 214 & \(6{ }^{\circ} 0,6 \cdot 3\) & Both white. \\
\hline 72, 74 P. viii. Argus & Jan.-Apr. & 8 & -23 40 & 942 & 92 & 823 & 744 & \(4{ }^{\prime} 9\) & 86 & 6'0, \(8 \cdot 5\) & Red, green. \\
\hline P. viii. 124-6 Cancri & Jan.-Apr. & 833.3 & +1957 & 955 & 916 & 836 & 757 & \(92 \cdot 8\) & 61 & \(6 \cdot 3,7^{\circ} \mathrm{O}\) & Deep yellow, \\
\hline Cluster in Cancer (Presepe) & Jan.-Apr. & 833.6 & +20 20 & 955 & 16 & 836 & 57 & & & & Bia \\
\hline e Hydræ* . & Jan.-Apr. & \(840 \cdot 7\) & + & 10 2 & 923 & 844 & 4 & 33 & 228 & 3.8,7* & Deep yellow, ashy blue. Binary. \\
\hline Red star in Cancer & Jan.-May & 93.8 & +31 & 10 25 & 946 & 97 & 827 & & & \(6 \cdot 5\) & Pale red. \\
\hline \(3^{8}\) Lyncis & Jan.-May & 9 II7 7 & +37 & 1033 & 954 & 914 & 835 & 9 & 236 & \(4^{\circ} 2,6 \cdot 3\) & White, ashy blue. \\
\hline 21 Ursæ Maj. & Dec.-May & 9176 & +5430 & 1039 & Io & 920 & 841 & \(5 \cdot 6\) & 31 & \(7.2,8.2\) & White, bluish. \\
\hline a Hydræ & Jan.-May & \(922^{\circ} \mathrm{O}\) & -8 & 10 & & 925 & 845 & 281 \({ }^{\prime}\) & \({ }^{1} 53\) & '0 & le gree \\
\hline 6 Leonis & Jan.-May & \(925^{8}\) & + 10 & 1047 & 10 8 & 929 & 849 & \(37^{\circ}\) & 75 & \(5{ }^{\circ}\), \(9^{\prime} 5\) & Orange, deep blue. \\
\hline - (14) Leonis & Jan.-May & \(935^{\prime} \mathrm{I}\) & + 1024 & 10 56 & 1017 & 938 & \(85^{8}\) & 80.9 & 4 I & \(3 \cdot 8,9 \cdot 3\) & Reddish white, blue (8). \\
\hline 9 Sextantis \({ }^{\text {Nebula in Sextans }}\) & Jan.-May & \(94^{8 \cdot 1}\) & + 529 & II 9 & 10 30 & 95 I & 9 II & \(53^{\circ}\) & 294 & \(6.5,8.5\) & Reddish, pale blue. \\
\hline Nebula in Sextans & Jan.-May & 9 & - 7 & II 21 & 1041 & IO 2 & 923 & & & & Milky white. \(3^{\prime}\) by \(\mathrm{I}^{\prime}\). \\
\hline \multicolumn{12}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(1) A sapphire 6 mag. in the field.
(2) Two other companions forming a curve ; \(42^{\prime}\) north is a pair \(7^{\circ} 5,9^{\circ} 0: 277^{\circ}\) : \(36^{\prime \prime} \circ\); orange, blue. \\
(3) Binary, period very long, over 1,000 years. A 3 rd star, \(9^{\circ} 0\), blue, at \(164^{\circ}\) : \(2 \mathrm{IO}^{\prime \prime} .0\) may also be connected. \(73^{\prime \prime} \cdot 3\) probably forms a ternary system ; and a \(4^{\text {th }}, 9^{\circ} 5\) mag., at \(223^{\circ}\) : \\
(4) Distance of Procyon one million six hundred and eighty thousand times that of the Earth from the Sun. The \(8^{\circ} 5 \mathrm{mag}\). is a very close double. Another \\
star, \(7^{\circ} 0\) mag., \(655^{\prime \prime}\) distant in th \\
(5) A bright orange \(5^{\circ} 2\) mag. s.f. \\
\(7^{\circ} 3: 14 \mathrm{x}^{\circ}: 1^{\prime \prime \prime} 3\); very white. \\
(6) 5.8 mag . is a close pair, having a 6.6 \\
The period of this pair is 6I years. \\
of gravity, but in an anomalous o \\
(7) A \(7^{\circ} 3\) mag. at \(88^{\circ}: 99^{\prime \prime} \cdot 8\), white. \\
(8) \(3^{\circ} 8 \mathrm{mag}\), is moving.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{APRIL}
APRIL (Mean Time of Transit at Greenwich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 30 & \[
\left\lvert\, \begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}\right.
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P. M. & & h. m. & - \({ }^{\prime}\) & h. m.
9
9 & \[
\begin{aligned}
& \text { h. m. } \\
& \text { to } 20
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. } \mathrm{m} \text {. } \\
& \text { to } 59
\end{aligned}
\] & \[
\begin{array}{ll}
\text { h. m. } \\
\text { II } 35
\end{array}
\] & " & - & - & \\
\hline Pair in Gemini. . & Dec.-Apr. & \(6 \quad 23\) & +2427 & 522 & 443 & 44 & 3 28 & \(3{ }^{\circ} \mathrm{O}\) & 188 & 6.7, \(8 \cdot 2\) & Deep yellow, blue. \\
\hline 12 Lyncis*. & Dec.-May & \(636 \cdot 2\) & +5933 & 556 & 517 & \(43^{8}\) & 42 & \(1 \cdot 7\) & 126 & 5'7,6.4 & Both white ( I ). \\
\hline Pair in Auriga : & Dec.-May & \(636 \cdot 3\) & +40 45 & 556 & 517 & \(43^{8}\) & 42 & \(28 \cdot 5\) & 131 & 6.2, 8.4 & Orange, turquoise. \\
\hline \(\mu\) Canis Majoris: & Dec.-Mar. & \(650 \%\) & -13 54 & 611 & \(53^{2}\) & 452 & 417 & 2.9 & 339 & \(5 \cdot 2,8 \cdot 2\) & Yellow, turquoise. \\
\hline Pair in Auriga & Dec.-May & \(651 \times 7\) & +37 15 & 612 & 532 & 453 & 418 & \(25^{\circ} 9\) & 56 & 6•8, 7* 1 & Both white. \\
\hline Cluster in Canis Maj. & Dec.-Apr. & \(654 \%\) & -13 32 & 614 & 535 & 456 & 420 & - & - & 8-10.5 & 20' diam. \\
\hline 19 Lyncis & Dec.-May & \(7 \quad 13 \cdot 5\) & +55 30 & 633 & 554 & 515 & 439 & 147 & 314 & 5*2, 6*2 & Whitish blue, blue (2). \\
\hline 20. Lyncis . & Dec.-May & \(7 \quad 13.5\) & +50 22 & 633 & 554 & 515 & 439 & 15.0 & 253 & 6.9, 7. 2 & Both white. \\
\hline Pair in Gemini . & Dec.-Apr. & \(725^{\circ} 9\) & +238 & 646 & 66 & 527 & 452 & 11*6 & 180 & 6.3, \(8 \cdot 2\) & White, blue. \\
\hline a Geminorum (Castor) & Dec.-Apr. & 727.3 & +328 & 647 & 68 & 528 & 453 & 5*8 & 232 & \[
3^{\circ} 0,4^{\circ}
\] & Both grnish. yellow. Binary (3). \\
\hline \(n^{1}\) Argâs Cluster in Ara & Dec.-Mar. & 729.5 & -23 14 & 649 & 6 10 & 531 & 455 & \(9^{\circ}\) & \[
288
\] & \[
6 \cdot 0,6 \cdot 0
\] & Red, blue. \\
\hline Cluster in Argo & Dec.-Apr. & \(73^{1} 3\) & -14 14 & 651 & 612 & 533 & 457 & - & - & 5'5-9*5 & Visible to naked eye (4). \\
\hline \(k^{1}\) Argus & Dec.-Apr. & \(734 \%\) & \(-2633\) & 654 & 615 & 535 & 5 - & 10^0 & 318 & \(5^{\circ} \mathrm{O}, 5^{\circ} \mathrm{O}\) & Both topaz yellow. \\
\hline 5 Argûs & Dec.-Apr. & \(742 \cdot 6\) & -1155 & \(7 \quad 2\) & 623 & 544 & 58 & \(3 \cdot 3\) & 17 & 5\%7, \(7 \cdot 5\) & White, olive. \\
\hline Pair in Cancer . . & Dec.-May & 758.7 & +2752 & 718 & 639 & 6 - & 524 & 3.3 & 353 & 6.5, 7'x & White, deep blue. \\
\hline Cluster in Monoceros & Dec.-May & 8 8 79 & - 527 & 728 & 648 & 69 & 534 & & - & 8-10.5 & \(20^{\prime}\) diam. \\
\hline Pair in Cancer . & Dec.-May & \(8 \quad 18.2\) & +20 32 & \(73^{8}\) & 659 & 619 & 544 & 37.5 & 191 & \(7{ }^{\circ} 0,8 \cdot 2\) & White, blue. \\
\hline Pair in Monoceros . & Dec.-May & \(8 \quad 32 \cdot 3\) & -624 & 752 & 713 & 633 & \(55^{8}\) & 64.6 & 211 & 6.0, 7 \% & Yellow, whitish blue. \\
\hline P. viii. r29 Cancri & Dec.-May & \(833 \cdot 8\) & +20. 5 & 753 & 714 & 635 & 559 & \(20 \cdot\) & 55 & \(57,9 \times 5\) & Deep yellow, blue (5). \\
\hline \(3^{31}\) Monocerotis & Dec.-May & 838.0 & -649 & 758 & 718 & 639 & 64 & \(78 \cdot 3\) & 309 & 5:5, 7'5 & Golden, deep blue. \\
\hline P. viii. 160 Hydræ & Dec.-May & \({ }^{8} 39^{\circ} 6\) & 2 II & 759 & 720 & 641 & 65 & 4.5 & 260 & 6'7, \(7 \times 7\) & White, ashy olive. \\
\hline - Cancri Cluster in Cancer & Dec.-May & \(839^{\circ} 7\) & +29 II & 759 & 720 & 641 & 65 & \(30 \cdot 4\) & 307 & \(4 \cdot 2,6 \cdot 3\) & Deep yellow, deep blue. \\
\hline \begin{tabular}{l}
Cluster in Cancer \\
\({ }_{17}\) Hydræ
\end{tabular} & Dec.-May
Dec.-May & 8
8
\(844^{\prime \prime} 9\)
849 & +1214 & \(\begin{array}{ll}8 & 4 \\ 8 & 9\end{array}\) & 725
730 & 646
651 & 610
615 & 4'2 & 35 & \(9-10 \cdot 5\)
\(6.7,7 \times 2\) & About 200 stars, 20 diam. (6). Both white. \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
(x) Binary ; period perhaps 650 years. A \(7^{\circ} 4 \mathrm{mag}\). at \(307^{\circ}: 8^{\prime \prime} \cdot 7\), bluish red. \\
(2) A blue \(6{ }^{\circ} 5 \mathrm{mag}\), at \(35^{\circ}: 215^{\prime \prime} 2\). \\
(3) Distance r,050,000 times that of the Earth from the Sun (see March list).
\end{tabular}} & & \[
\begin{aligned}
& \text { (4) } \mathrm{Co} \\
& \text { (5) } \mathrm{A} \\
& \text { (6) } \mathrm{Vis}
\end{aligned}
\] & ns se
\[
\begin{aligned}
& \text { nag., } \\
& \text { int }
\end{aligned}
\]
in th & \[
\begin{aligned}
& \text { e, at } \\
& \text { nder, }
\end{aligned}
\] & \[
\begin{gathered}
\circ \\
\text { ched } \\
\text { che }
\end{gathered}
\] & \[
\begin{aligned}
& \text {; and } \\
& =2 \mathrm{Ph}
\end{aligned}
\] & o mag., also blue, at \(44^{\circ}: 82^{\prime \prime}\) n cap. \\
\hline
\end{tabular}

APRIL
APRIL (Mean Time of Transit at Greenwich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 30 & \[
\left\lvert\, \begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}\right.
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & - _' &  & \[
\begin{aligned}
& \text { h. m. } \\
& \text { to } 20
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& \text { Io } 59
\end{aligned}
\] & \[
\begin{array}{ll}
\text { h. } & \text { m. } \\
\text { II } & 35
\end{array}
\] & " & 은 & & \\
\hline \(\sigma^{2}\) Ursw Maj.* & Dec.-June & \(9 \quad 0{ }^{\circ} 4\) & \(+6736\) & 820 & 741 & 71 & 626 & 2.4 & 233 & 5*1, 8.7 & Yellow, reddish blue. Binary. \\
\hline Pair in Cancer & Dec.-May & \(\begin{array}{ll}9 & 0 \cdot 9\end{array}\) & +2326 & 820 & 741 & \(7 \quad 2\) & 626 & 7.2 & 201 & 6.4, 7'1 & White, ashy. \\
\hline Nebula in Ursa Maj. & Dec.-June & \(914^{\circ} \mathrm{I}\) & +5129 & 834 & 754 & 715 & 640 & - & - & & \(4^{\prime}\) by \(2^{\prime}\). White ( I ). \\
\hline 39 Lyncis & Dec.-June & 914.8 & +50 2 & 834 & 755 & 716 & 640 & 6.0 & 320 & 6.8,8.2 & White, blue. \\
\hline 41 Lyncis & Dec.-June & 921.2 & +46 7 & 841 & 8 & 722 & 647 & 82.5 & 162 & 5'7, 7'5 & Deep yellow, bluish white. \\
\hline \(\tau^{2}\) Hydrø & Feb.-Apr. & 923.4 & -2 16 & 843 & 84 & 724 & 649 & \(64^{\circ} 9\) & 3 & 5.5, 8.5 & White, lilac (2). \\
\hline Pair in Leo Minor & Feb.-June & 928.2 & +4028 & 848 & 88 & 729 & 654 & 247 & 147 & 6.2, \(7 \cdot 2\) & Both yellowish white (3). \\
\hline Nebula in Ursa Maj. & Dec.-June & 9 \(46{ }^{\circ} \mathrm{O}\) & +6937 & 95 & 826 & 747 & 7 II & - & - & - & \(9^{\prime}\) by \(2 \frac{1}{2}\). Nucleus \(=8 \mathrm{~m} . \operatorname{star}(4)\). \\
\hline Pair in Ursa Maj. . & & 10 8\%7 & +71 \(3^{8}\) & 928 & 849 & 89 & 734 & 16.7 & 167 & 6\%0, \(7^{\circ} 0\) & White, blue. \\
\hline \(\zeta\) Leonis & Feb.-June & 10 10'3 & +23 59 & 930 & 850 & 8 II & 736 & 318.7 & 342 & \(3.4,6.0\) & White, yellow (5). \\
\hline \(\gamma\) Leonis & Feb.-June & 10 13.7 & +20 25 & 933 & 854 & 814 & 739 & 3.3 & 115 & 2.2, \(3 \cdot 4\) & Golden, greenish gold (6). \\
\hline 35 Sextantis. & Mar. -June & 10 \(37 \% 4\) & + 52 I & 957 & 917 & \(83^{8}\) & 83 & 6.6 & 240 & 6.0, \(7 \cdot 0\) & Yellow, blue. \\
\hline 54 Leonis : & Mar.-June & 10 49.4 & +25 21 & 10 9 & 929 & 850 & 815 & \(6 \cdot 3\) & 105 & 4*8,6.7 & Pearly white, ashy green. \\
\hline Scarlet star in Crater* & Mar. -June & 10 \(55^{\circ} \mathrm{O}\) & -1742 & 10 14 & 935 & 856 & 820 & - & - & Var. & 8.5-9.5. Intense blood col. (7). \\
\hline a Ursw Maj. & Dec.-June & 10 56.7 & +62 21 & 10 16 & 937 & 857 & 822 & 384.9 & 204 & \(\mathrm{x}^{\prime} 9,8{ }^{\circ}\) & Yellow, violet. \\
\hline Nebula in Leo . & Mar.-June & Io \(59{ }^{\circ} 9\) & + 035 & 1019 & 940 & 91 & 825 & - & - & - & \(3^{\prime}\) by r', wht. An 8 mg . star s.f. \\
\hline Nebula in Ursa Maj.
\(\boldsymbol{\xi}\) Ursæ Maj.* & Feb.-June & \(\begin{array}{ll}\text { II } & 8 \cdot 1 \\ \text { II } \\ \text { I }\end{array}\) & +5538 & 10 27 & 948 & 99 & 833 & - & - & - & Planet-like, pale, \(\mathbf{z}^{\prime}\) diam. \\
\hline \(\xi\) Ursor Maj.* & Feb.-June & 11 12'I & +32 10 & 1031 & 952 & 913 & 837 & 17 & 242 & \(4^{\circ} 0,4.4\) & White or yellow (8). \\
\hline - Leonis & Mar.-June & II 179 & + II 9 & 10 37 & 958 & 918 & 843 & 2.8 & 63 & 4.6, 7*4 & Yellow, ashy olive. \\
\hline \(\tau\) Leonis & Mar. -June & II \(22^{\prime} \mathrm{I}\) & + 329 & 10 41 & 10 & 923 & 847 & \(9^{2} 7\) & 173 & \(5^{\circ} 0,6 \cdot 7\) & Golden, bright blue. \\
\hline 57 Ursw Maj.* & Mar.-June & II 22.9 & + 3958 & IO 42 & Io 3 & 923 & 848 & \(5 \cdot 5\) & 4 & 5.5, 8.3 & White, violet. \\
\hline \({ }_{17}\) Crateris & Apr.-June & \(\begin{array}{ll}\text { II } 26.6 \\ \text { II } & 28\end{array}\) & -28 \(3^{8}\) & 10 46 & Io 6 & 927 & 852 & \(9{ }^{\circ}\) & 29 & \(5.5,5.8\) & Yellow, violet (9). \\
\hline 90 Leonis aren
2 Comæ Berenicis & Mar.-June & II 28.8 & +1725 & Io 48 & 10 9 & 929 & 854 & 3.2 & 212 & 6.5, 7.5 & White, bluish (ro). \\
\hline 2 Comæ Berenicis & Mar.-June & II \(5^{8} \cdot 4\) & +22 6 & I1 17 & \(103^{8}\) & 959 & 923 & 3.8 & 240 & \(5^{\circ} 8,7 \cdot 2\) & White, ashy. \\
\hline \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(r) In field with 37 Ursx, 6 mag., n. \(f\). it. A 7 mag. south. \\
(2) Moving together through space. \\
(3) A \(7^{\circ} 5\) mag. in \(325^{\circ}: 118^{8 / \cdot 2}\). \\
(4) Another nebula \(40^{\prime}\) south, \(6{ }^{\prime}\) 'long by \(50^{\prime \prime}\) broad ; 'splendens stria luminis.' \\
Two pairs in field.
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(6) Binary, period 407 years. The finest pair in the northern sky. \\
(7) In the field with \(\alpha\) Crateris, 42 seconds of time following it. A blue star lies \(66^{\prime \prime}\) from the scarlet one in \(269^{\circ}\), and another s. f. \\
(8) The earliest calculated binary, period 60 years and nine months. \\
(9) Common proper motion. \\
(10) An \(8^{\circ} 5\) mag., reddish, at \(235^{\circ}: 64^{\prime \prime \prime} 5\).
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
MAY
MAY (Mean Time of Transit at Greenwich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & \[
\left\lvert\, \begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}\right.
\] & Posit.
Angles & Mag. & Colours and Remarks \\
\hline dereal time at 98 & & h & -' & h. m. & \[
\begin{aligned}
& \text { h. m. } \\
& \text { I2 } 18
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& \mathrm{I} 2 \mathrm{~F} .
\end{aligned}
\] & \[
\begin{array}{lll}
\text { h. } \\
\text { I3 } & 37
\end{array}
\] & " & - & & \\
\hline Pair in Camelopardus & & 8 8'1 & +7246 & 530 & 451 & 4 II & 3 \({ }^{1}\) & 439 & 86 & 57, \(9^{\circ} 0\) & Deep yellow, blue. \\
\hline \(v^{1}\) Cancri & Dec.-May & 819.8 & +2454 & 5.42 & 52 & 423 & 344 & 5.8 & 41 & \(6 \cdot 2,7^{1}\) & Greenish white, olive. \\
\hline P. viii. 108 Hydræ & Dec.-May & 829.8 & + 7 & 552 & 512 & 433 & 354 & 10.5 & 27 & 6'I, 7'I & White, reddish ash. \\
\hline ¢ Cancri . & Jan.-May & 8339 & + \(195^{8}\) & \(55^{6}\) & 516 & 437 & 358 & 134.2 & 249 & 5\%7, \({ }^{\circ}\) o & Yellow, ashy yellow. \\
\hline Cluster in Cancer & Jan.-May & \(844 \%\) & +12 & 67 & 527 & 448 & 49 & - & - & 9-10'5 & 20' diam. ; see April list. \\
\hline Nebula in Leo Minor* & Jan.-May & \(845^{\circ} 5\) & +3351 & 67 & 528 & 449 & 49 & - & - & & \(5^{\prime}\) by \(\mathrm{r}^{\prime}\); faint. 4 stars surround it. \\
\hline Pair in Hydra & Feb.-May & \(85{ }^{1} 6\) & \(-170\) & 613 & 534 & 455 & 415 & 2.4 & 182 & \(7{ }^{\circ}, 7{ }^{\circ} 3\) & Both white. \\
\hline 66 Cancri & Jan.-June & 8543 & \(+3242\) & 616 & 537 & 457 & 418 & 4.5 & 137 & \(6 \cdot 0,8.2\) & White, bronze. \\
\hline Pair in Ursa Maj. & Dec.-June & \(9 \quad 37\) & +62 8 & 625 & 546 & 57 & 427 & \(24^{\circ} 9\) & 26 & \(6 \cdot 5,7^{\circ}\) & Both white. \\
\hline 40 Lyncis & Jan. June & 914.15 & +3452 & 6 & 556 & 517 & \(43^{8}\) & \(202 \cdot 3\) & 33 & 3'I, 8.7 & Orange, violet ( r ). \\
\hline \({ }^{23}\) Ursm Maj. & Dec.-June & 922.6 & +6.334 & 644 & 65 & 526 & 446 & \(22 \cdot 8\) & 271 & \(4^{\circ} \mathrm{O}, 9^{\circ} \mathrm{o}\) & White, deep blue. \\
\hline Pair in Lynx & Dec.-June & 923.4 & +45 II & 645 & 6 & 526 & 447 & \(23 \cdot 8\) & \({ }^{1} 57\) & 7.2, \(8 \cdot 6\) & Yellow, blue (2). \\
\hline 7 Leonis & Feb.-June & 929.6 & +1453 & 651 & 612 & 533 & 453 & \(42 \cdot 6\) & 80 & \(6{ }^{5} 5,8\) o & Bluish white, violet. \\
\hline Pair in Leo Minor & Feb.-June & 934.3 & + 3929 & 656 & 617 & 537 & 458 & 3.4 & 283 & 6.8, \(8 \cdot 0\) & Deep yellow, deep blu \\
\hline Nebula in Ursa Ma & & 939.4 & +72 & 7 I & 622 & 542 & 3 & - & - & & \(45^{\prime \prime}\) diam. Whitish. Good field. \\
\hline Pair in I & Feb.-June & \(950 \%\) & +20 18 & 712 & 633 & 554 & 514 & \(30 \cdot 4\) & 175 & 6.6, \(7 \cdot 5\) & White, yellow. \\
\hline a Leonis (Regulus) & Feb. -June & 10 \(2 \cdot 3\) & +12 & 724 & 644 & 65 & 526 & 176.9 & 307 & I'I, 8.3 & Bluish white, olive (3). \\
\hline \(\gamma\) Leonis . & Feb.-June & 10 13.7 & +20 25 & 735 & 656 & 616 & 537 & \(3 \cdot 3\) & 115 & 2.2,34 & Golden, greenish gold (4). \\
\hline Nebula in Hydra & Mar.-June & 10 19*3 & -18 4 & 741 & 71 & 622 & 543 & - & & , 3 & Pale blue, resembling Jupiter (5). \\
\hline 49 Leonis* & Feb.-June & \(1029{ }^{\circ}\) & + 9 & 7 & 7 II & 632 & 552 & 24 & 158 & 6.2, 8 & White, turquois \\
\hline Nebula in Leo & Feb.-June & 10 37.9 & + 12 & 759 & 720 & 6 & 6 I & - & - & & \(2^{\prime}\) diam. \\
\hline Pair in Hydra . & Mar.-June & I0 \(42{ }^{\circ}\) & -14 40 & 83 & 724 & 645 & 65 & \(70 \cdot 5\) & 23 & \(6 \cdot 7,7 \times 6\) & Both white (6). \\
\hline Red star in Hydra & Mar. - June & 10 46 I & -20 39 & 87 & 728 & 649 & 69 & - & - & & Fine red (7). \\
\hline Pair in Ursa Maj. & Jan.-June & 10 52.9 & + 593 3 & 814 & 735 & 656 & 616 & 34.5 & 38 & \(6.5,7.5\) & Yellow, blue. \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(1) 8.7 has a minute companion at \(18^{\prime \prime}\). \\
(2) 7 mag. star in field, \(n\). \\
(3) Moving together through space. \\
(4) See April list ; a 7 mag. star at \(29 \mathrm{I}^{\circ}: 239^{\prime \prime}\) has large proper motion; another, \(8 \frac{1}{2}\) mag., at \(302^{\circ}\) : \(327^{\prime \prime \prime} 8\).
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(5) About \(30^{\prime \prime}\) diam. \\
(6) \(7^{\circ} 6\) is double, with a companion of the same magnitude and colour at \(18^{\circ}: 6^{\prime \prime \prime} 6\). All three stars are nearly in the same straight line. \(22^{\prime}\) exactly south of this \\
(7) Has a blue \(9^{\circ} 5 \mathrm{mag}\). in \(90^{\circ}: 30^{\prime \prime}\) triple is P. x. 159 . \(7{ }^{\circ} 5,8{ }^{\circ} 5: 11^{\circ}: 30^{\prime \prime \prime} 7\)
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
MAY (Mean Time of Transit at Greenwich).


\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline ¢ & （1） &  \\
\hline  &  & Bag ex \\
\hline  &  &  \\
\hline － & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline ส & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline F & \begin{tabular}{l}
 \\

\end{tabular} & \\
\hline － & \begin{tabular}{l}
 \\

\end{tabular} & 5 \\
\hline ェ் &  & \[
\ddot{n}
\] \\
\hline \(\dot{\text { ¢ }}\) &  &  \\
\hline \[
\frac{\stackrel{0}{2}}{\stackrel{2}{5 n}}
\] & \begin{tabular}{l}
 ーTアTアアアアア アアアT アアアアア アTアリ \\

\end{tabular} &  \\
\hline  &  &  \\
\hline
\end{tabular}

JULY（Mean Time of Transit at Greenzerich）．
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline 戚 &  &  \\
\hline  &  & \\
\hline 官 &  & \\
\hline － & \begin{tabular}{l}
 \\

\end{tabular} & \\
\hline － & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline H & \begin{tabular}{l}
 \\

\end{tabular} & \\
\hline \(\ldots\) & \begin{tabular}{l}
 \\

\end{tabular} & ๕ \\
\hline 畕 & \begin{tabular}{l}
 \\

\end{tabular} &  \\
\hline \(\dot{\sim}\) &  &  \\
\hline － &  & 을 \\
\hline  &  &  \\
\hline
\end{tabular}
AUGUST (Mean Time of Transit at Greenwich).

AUGUST
AUGUST (Mean Time of Transit at Greenzeich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & Distances & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & -' & \[
\begin{aligned}
& \text { h. m. } \\
& 1942
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. } \mathrm{m} . \\
& \mathrm{r} \\
& \hline 2 \mathrm{~T}
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& \text { r9 10 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { h. } \mathrm{m} . \\
& 1940
\end{aligned}
\] & \(\underline{\prime \prime}\) & \(\bigcirc\) & & \\
\hline 15 Aquilæ . & July-Oct. & \(1859^{\circ}\) & 412 & 1017 & 938 & 859 & 819 & 34.5 & 207 & 6'0, \(7^{\circ} 5\) & White, red lilac. \\
\hline 6 (Bode) Cygni & May-Nov. & 19 9\%2 & +49 40 & 1028 & 948 & 99 & 830 & 97 & 219 & 5'8, 6'I & Deep yellow, yellow ( r ). \\
\hline \(\eta\) Lyrm & June-Nov. & \(19 \quad 9{ }^{\prime} 9\) & \(+3^{8} 57\) & 1028 & 949 & 99 & 830 & 28.2 & 84 & \(4^{\prime} 1,8{ }^{\circ}\) & Bluish white, violet (2). \\
\hline \(\theta\) Lyræ & June-Nov. & I9 12.4 & +3756 & 10 31 & 951 & 912 & 833 & \(100 \cdot 7\) & 70 & \(5^{\circ} \mathrm{O}, 8^{\circ} \mathrm{O}\) & Yellow, blue (3). \\
\hline \(\beta\) Cygni (Albireo) & July-Nov. & 1926.1 & +2743 & 1044 & 10 & 926 & 846 & \(34 \cdot 5\) & 56 & \(2 \cdot 7,5 \times 3\) & Golden, blue (4). \\
\hline Red star in Sagittarius & July-Sept. & IG 27.8 & -16 37 & 10 46 & 10 7 & 927 & 848 & - & & 6.5 & Fine ruby. \\
\hline a Aquilæ (Altair) & July-Oct. & \(1945^{\circ} 2\) & + 834 & II 3 & 10 24 & 945 & 95 & 156.5 & 310 & I 0,9 \% & White, violet. \\
\hline - Draconis* & & 19 48.6 & +69 59 & 117 & 1027 & 948 & 99 & 2.9 & 5 & \(4^{\circ} 2,7^{\circ} 2\) & Deep yellow, turquoise. \\
\hline Nebula in Vulpecula & July-Nov. & 1954.6 & +2225 & II 13 & 1033 & 954 & 915 & - & & & The 'uinb-bell ' Neb ula \\
\hline \(\theta\) Sagittm & July-Nov. & \(20 \quad 49\) & +2034 & II 23 & 10 44 & & 25 & 114 & 326 & 6.0, \(8 \cdot 1\) & White, turquoise (5). \\
\hline Red star in Capricornus & Aug.-Sept. & \(2010 \cdot 4\) & -2140 & II 28 & 10 49 & 10 10 & 930 & - & - & Va & 6.5-9* ? Pure ruby. \\
\hline \(a^{2} a^{1}\) Capricorni & Aug.-Oct. & 201177 & -1254 & II 30 & 1050 & 10 I & 932 & 376 & 291 & \(3^{\circ} \mathrm{O}, 4^{\circ} \mathrm{O}\) & Both deep yellow (6). \\
\hline \(\sigma\) Capricorni & Aug.-Sept. & 2012.8 & -19 28 & \(113^{1}\) & 10 52 & 10 & 933 & \(55^{\prime} 8\) & 177 & \(5^{\circ} \mathrm{O}, 8 \cdot 3\) & Orange, violet. \\
\hline \(0^{2}\) Capricorni & Aug.-Sept. & 2023.4 & -18 57 & II 41 & II & 1023 & 943 & \(22^{\prime} 1\) & 240 & \(6{ }^{\circ}, 7^{\circ}\) & White, bluish white. \\
\hline y Delphini & July-Nov. & \(20{ }^{1} \mathrm{I}^{\prime} 4\) & +1543 & II 59 & 1120 & 1041 & 10 & Ir 3 & 271 & \(4^{\circ} 0,5 \times 7\) & Reddish yellow, green \\
\hline - Equulei & July-Oct. & 2053.4 & + 351 & 12 II & II 32 & 1053 & 1013 & 10.6 & 73 & 6'1, 7.4 & White, ashy blue (8). \\
\hline 12 Aquarii & July-Oct. & \(2058{ }^{\text {² }}\) & - 616 & 1216 & 1137 & 10 57 & 1018 & '7 & 192 & \(6{ }^{\circ} \mathrm{O}, 8^{\circ} \mathrm{O}\) & Yellow, blue. \\
\hline 6r Cygni & Jan.-Nov. & \begin{tabular}{lll}
21 & 1 \\
\hline
\end{tabular} & +38 11 & 122 & II 40 & II 1 & 10 & \(20^{\prime} 7\) & & \(5^{\circ} \mathrm{O}, 6^{\prime} \mathrm{O}\) & Golden yellow, orange (9) \\
\hline P. xxi. x Cygni & July-Nov. & \(21 \quad 3.8\) & +29 43 & 1222 & II 42 & II 3 & 1024 & 3.5 & 313 & 6.1, \(8 \cdot \mathrm{I}\) & White, blue (ro). \\
\hline I Pegasi & July-Nov. & 2116.8 & +19 19 & 1235 & 1155 & II 16 & 1037 & 36.2 & 311 & \(4{ }^{3} 3,8.2\) & Deep yellow, lilac. \\
\hline Cluster in Pegasus & July-Nov. & 2124.5 & +11 39 & 1242 & 123 & II 24 & 10 44 & & - & 10'5-11'5 & Globular, \(5^{\prime}\) diam. \\
\hline Cluster in Aquarius. & July-Oct. & 2127.5 & - 120 & 1245 & 12 & II 27 & 10 47 & - & - & 10'0-1 & \(3 \frac{1}{2}{ }^{\prime}\) diam. \\
\hline Cluster in Cygnus & July-Nov. & 2128.1 & +4756 & 1246 & 127 & 1127 & 1048 & - & - & 7-10 & Splendid, \(1^{\circ}\) diam. \\
\hline - Pegasi & July-Nov. & 2138.6 & + 921 & 1256 & & 1138 & 10 58 & \(140 \cdot 4\) & 322 & \(2.4,8.8\) & Deep yellow, violet. \\
\hline \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(x) Large common proper motion pair resembling 6x Cygni. Distance, 430,000 times that of the Earth from the Sun. Beautiful field. \\
(2) Three other pairs in large field. \\
(3) Fine field. \\
(4) One of the finest and brightest coloured pairs. \\
(5) A \(6^{\circ} 7\) mag., yellow, at \(225^{\circ}: 76^{\prime \prime \prime} \cdot 5\). \\
(6) \(a^{4}\) has a \(9^{\circ} 5\) mag. comes at \(156^{\circ}: r^{\prime} 54^{\prime \prime} 5\) which is coarsely quadruple, and a very small duuble comes at \(150^{\circ}: 7^{\prime \prime \prime} 4 \cdot a^{2}\) has a 9 mag. dilac comes at \(221^{\circ}: 44^{\prime \prime \prime} 3\),
and several faint companions.
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(7) \(5^{\circ} 7\) variable in colour. An 8 mag. at \(141^{\prime \prime} n\). \(f\). \\
(8) \(6^{\circ} \mathrm{x}\) has a \(6^{\circ} 8\) mag. comes at \(285^{\circ}: \mathrm{x}^{\prime \prime} \cdot 3\). Binary. \\
(9) Motion probably rectilinear, not binary, as has been supposed, with very large comnion proper motion. One of the first stars whose distance was determined ; recent measures give about 430,000 times the distance of the Earth from the Sun. \\
(10) A third, xo mag., at \(5^{\prime \prime}\), a fourth more distant.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 30 & Distances & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & \(\bigcirc{ }^{\circ} 1\) & h. m.
I9 44 & \[
\begin{gathered}
\text { h. m. } \\
20 \quad 23
\end{gathered}
\] & \(\begin{array}{cc}\text { h. m. } \\ \text { 2I } & 3\end{array}\) & h. m.
2I
38 & " & 0 & & \\
\hline Pair in Ophiuchus & June-Aug. & \(17 \quad 1 \times 1\) & - I \(3^{1}\) & 618 & \(53^{8}\) & 459 & 424 & \(20^{\prime} 3\) & 280 & \(6 \cdot 0,8 \cdot 7\) & White, bluish. \\
\hline Pair in Ophiuchus & June-Sep. & 1722.5 & + II 30 & 639 & 6 0 & 520 & 445 & \(27 \cdot 1\) & 283 & \(6 \cdot 3,7 \cdot 3\) & White, blue. \\
\hline Pair in Hercules & May-Sep. & 1745.6 & +2520 & \(7 \quad 2\) & 623 & 544 & 58 & \(6 \cdot 6\) & 142 & \(6 \cdot 8,8.4\) & White, ashy. \\
\hline Pair in Hercules & May-Sep. & 1754.7 & \(+303\) & 7 11 & 632 & 553 & 517 & 19.5 & 278 & \(6 \cdot 9,7 \cdot 9\) & Reddish yellow, sky blue. \\
\hline Red star in Serpens. & June-Aug. & 17 56.0 & -12 19 & 713 & 633 & 554 & 519 & - & - & \(6 \cdot 8\) & Strong reddish. \\
\hline Nebula in Draco & & 1758.3 & +65 \(3^{8}\) & 715 & 636 & 556 & 521 & - & - & & Planetary. 20 " diam. Blue. \\
\hline P. xvii. 362 Tauri Pon. . & July-Sep. & \(18 \quad 0.3\) & +12 & 717 & 638 & 558 & 523 & \(6 \cdot 6\) & 258 & \(6 \cdot 3,7 \cdot 2\) & White, reddish olive. \\
\hline Pair in Draco & May-Oct. & \(18 \quad 0.9\) & +5626 & 717 & \(63^{8}\) & 559 & 523 & \(38 \cdot 4\) & 24 & \(6 \cdot 8,7 \cdot 7\) & White, white ( r ). \\
\hline roo Herculis & June-Oct. & \(18 \quad 3 \cdot 2\) & \(+265\) & 720 & 640 & 6.1 & 526 & \(14^{\circ} 0\) & 3 & \(5 \cdot 5,5 \cdot 5\) & Both greenish yellow. \\
\hline Pair in Draco . . & June-Nov. & 18 31'3 & \(+5215\) & 748 & \(7 \quad 8\) & 629 & 554 & \(25^{\circ} 8\) & 272 & \(5 \% 780\) & Deep yellow, deep blue. \\
\hline Pair in Taurus Pon. & June-Sep. & \(18 \quad 39{ }^{\circ} 9\) & \(+522\) & 756 & \(\begin{array}{lll}7 & 17\end{array}\) & 638 & 62 & \(2 \cdot 2\) & 115 & \(6 \cdot 2,6 \cdot 6\) & Both white (2). \\
\hline 5 Aquilæ & June-Sep. & \(1840 \cdot 6\) & - 14 & 757 & 718 & 638 & 63 & \(13^{\circ} 0\) & 122 & 6.3, 7'3 & White, clear blue (3). \\
\hline Pair in Lyra & June-Nov. & \(1850 \%\) & \(+3350\) & 87 & 728 & 648 & 6 I3 & \(45^{\circ} 4\) & 350 & \(5 \cdot 5,7 \cdot 6\) & Straw colour, purple (4). \\
\hline Pdir in Aquila & June-Sep. & \(1854 \%\) & +1244 & 8 II & \(73^{2}\) & 652 & 617 & 16.7 & 259 & \(6 \cdot 8,8 \cdot 2\) & Reddish orange, deep blue (5). \\
\hline Red star in Aquila & June-Sep. &  & - 55 r & 815 & 735 & 656 & 621 & - & - & 7 3 & Var.? Fine deep red (6). \\
\hline Cluster in Lyra* & June-Nov. & 19 12.1 & +29 59 & 828 & 749 & 7 10 & 634 & & - & 10.5-11.5 & A nebula in small telescopes. \\
\hline Pair in Vulpecula & June-Nov. & 19 15.5 & +26 27 & 832 & 752 & 713 & \(63^{8}\) & 54.5 & 5 & \(6 \cdot 2,6 \cdot 3\) & Deep blue, red. \\
\hline e Aquilæ . & July-Nov. & 1924.7 & \(-32\) & 841 & 82 & 722 & 647 & 5 & - & 6\% & Fine orange red. Var.? \\
\hline Pair in Cygnus. & May-Nov. & 1931.3 & \(+5953\) & 848 & 88 & 729 & 654 & \(76 \cdot 5\) & 287 & \(5 \cdot 7,7 \cdot 2\) & Golden, blue. \\
\hline 16 Cygni & May-Nov. & 19 \(3^{8.8}\) & \(+5016\) & 855 & 816 & 736 & 7 I & 37.8 & 135 & \(5^{\prime} 1,5^{\circ} 2\) & Both dull yellow. \\
\hline \(\chi^{2}\) Cygni & June-Nov. & 19 \(42^{\prime} 1\) & \(+3328\) & 858 & 819 & 740 & 74 & 25.7 & 72 & \(4 \cdot 8,8 \cdot 2\) & Deep yellow, reddish blue (7). \\
\hline \(\zeta\) Sagittæ & June-Nov. & 1943.9 & +1851 & 9 c & 8 21 & 742 & 76 & \(8 \cdot 6\) & 313 & \(5 \cdot 2,8 \cdot 4\) & White, olive blue. \\
\hline \begin{tabular}{l}
57 Aquilæ \\
* Cygni
\end{tabular} & July-Nov. & I9 48.4 & \[
-829
\] & 9 & 825 & 746 & 7 II & \(35^{\prime 8}\) & \[
171
\] & \(5^{\circ} \mathrm{I}, 6{ }^{\circ}\) & Golden, blue (8). \\
\hline \(\psi\) Cygni & May-Nov. & 1952.7 & \(+528\) & \(9 \quad 9\) & 830 & 750 & 715 & . 3.4 & 183 & \(5^{\circ} 0,7^{\circ} \mathrm{I}\) & Whitish yellow, ashy blue. \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(1) \(7^{\prime} 7\) has an 8.2 mag . star at \(147^{\circ}: 5^{\prime \prime} \cdot 9\). \\
(2) Slight motion in angle, distance constant at \(2^{\prime \prime} \cdot 22\). Good test for small instruments. \\
(3) A faint star, which may be variable, at \(146^{\circ}: 27^{\prime \prime \prime} 5\). \\
(4) \(5^{\circ} 5\) is a close and very unequal pair. All three moving together through space. \\
(5) In low power field with II Aquilæ, \(n, f\) in Aq. is a delicate and beautiful pair. \(5^{\circ} 1,9^{\circ} 0: 260^{\circ}: 17^{\prime \prime} \cdot 0\), white, sky blue.
\end{tabular}}} & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(6) \(2^{m} \cdot 43^{n} f .12\) Aquilæ, nearly on parallel. \\
(7) Fine field. About \(I^{m} p\). Io' south, is a little 8 mag. pair \(3^{\prime \prime}\) apart. About \(I^{0} s \cdot f\). is the variable \(x^{2}\) Cygni.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & \multicolumn{6}{|l|}{(8) The colours should be watched; they are possibly variable.} \\
\hline
\end{tabular}
SEPTEMBER (Mean Time of Transit at Greenwich).


OCTOBER.
OCTOBER (Mean. Time of Transit at Greenwich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & \[
\begin{aligned}
& \text { Dis- } \\
& \text { tances }
\end{aligned}
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & - ' & h. m. & \[
\begin{array}{r}
\text { h. m. } \\
22 \quad 22
\end{array}
\] & \[
\begin{array}{|cc|}
\hline \text { h. } & \text { m. } \\
23 & 3
\end{array}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 2340
\end{aligned}
\] & " & - & - & \\
\hline 39 Draconis . & June-Nov. & 1822.2 & +5844 & 541 & 5 1 & 422 & 343 & 3.6 & 359 & 5*2, 8*I & White, blue ( I ). \\
\hline Red star in Lyra* & June-Nov. & 1828.3 & + \(3^{6} 54\) & 547 & 57 & 428 & 349 & - & - & 8 & Intense crimson. Var. \\
\hline Pair in Lyra & June-Nov. & \(1839^{\circ} 5\) & +44 49 & 558 & 519 & 439 & 4 - & \(25^{\circ} 9\) & 10 & 6.8,8.0 & Reddish yellow, blue. \\
\hline \(\epsilon^{1}\) Lyrø & June-Nov. & 1840.6 & +3933 & 559 & 520 & 440 & 4 I & \(3^{\circ} \mathrm{I}\) & 16 & 4'6, 6*3 & White, blue (2). \\
\hline \(\epsilon^{2}\) (5) Lyræ & June-Nov. & \(1840 \cdot 6\) & +3930 & 559 & 520 & 440 & 4 x & \(2 \cdot 6\) & 137 & 5'1, 5*2 & Both white. \\
\hline - Pair in Draco & June-Dec. & 18 \(56 \cdot 1\) & +62 15 & 615 & 535 & 456 & 417 & 16.9 & 124 & 6.2, \(9^{\circ} \mathrm{O}\) & Reddish yellow, blue. \\
\hline Pair in Lyra & June-Nov. & \(\begin{array}{ll}19 & 4.2\end{array}\) & +3435 & 623 & 543 & 54 & 425 & 13.3 & 271 & \(6 \cdot 3,8 \cdot 2\) & White, deep blue (3). \\
\hline Pair in Sagitta. & July-Nov. & 19 15.8 & + 1856 & 634 & 555 & 516 & 436 & \(8 \cdot 8\) & 288 & 6.4, 8.3 & White, deep blue. \\
\hline Red star in Sagitta & July-Nov. & 1921.3 & +1934 & 640 & 6 - & 521 & 442 & - & - & 6.1 & Orange (4). \\
\hline P. xix. 154 Cygni & June-Nov. & 1923.7 & +4954 & 642 & 63 & 523 & 444 & 71.8 & 307 & 6.7, 7 7 7 & Yellow, deep blue. \\
\hline \(\beta\) Cygni (Albireo) & July-Nov. & 19 26.1 & +2743 & 644 & 65 & 526 & 446 & 34.5 & 56 & 2.7, 5.3 & Golden, blue (5): \\
\hline - Sagittæ . & July-Nov. & \(1932 \cdot 1\) & +1612 & 650 & 611 & \(53^{2}\) & \(45^{2}\) & \(90 \cdot 7\) & 81 & 5\%7, 7.8 & Golden, light blue. \\
\hline Cluster in Cygnus & June-Nov. & \(1937 \cdot 3\) & + 3956 & \(65^{6}\) & 616 & 537 & 458 & - & - & 9'5-11.5 & Fine ; near Milky Way. \\
\hline Pair in Draco & May-Nov. & 1938.3 & +60 15 & 657 & 617 & 538 & 459 & 18'1 & 28 & 6.3, 8.0 & White, sky blue. \\
\hline P. xix. 276-7 Cygni & June-Nov. & 1941.5 & +3549 & 70 & 621 & 54 I & \(5 \quad 2\) & 14.7 & 126 & 6.2, 6.8 & Yellow, blue. \\
\hline P. xix. 278 Cygni & June-Nov. & I9 41 \({ }^{6} 6\) & + 3444 & 70 & 621 & 54 T & \(5 \quad 2\) & \(38 \cdot 1\) & 28 & \(6{ }^{\circ} \mathrm{o}, 8 \cdot 2\) & Deep yellow, deep blue. \\
\hline 26 Cygni . . & May-Nov. & 19 58.2 & +49 47 & 716 & 637 & \(55^{8}\) & 518 & 417 & 146 & \(5{ }^{\circ} 3,8 \cdot 5\) & Golden, whitish blue. \\
\hline Cluster in Vulpecula & July-Nov. & \(20 \quad 7.2\) & +26 9 & 725 & 646 & 67 & 527 & - & - & 6.0-10\% & Large and rich. \\
\hline Pair in Cepheus & May-Dec. & 2015.6 & \(+55 \quad 2\) & 734 & 654 & 615 & 536 & 2.9 & 341 & \(6 \cdot 0,7.2\) & White, blue. \\
\hline Pair in Cygnus & June-Nov. & 20190 & +4237 & 737 & 658 & 619 & 539 & 96.4 & 63 & 6.5, 7.5 & Yellow, blue. \\
\hline Pair in Cygnus & June-Nov. & 2034.3 & \(+3^{815}\) & 752 & 713 & 634 & 554 & 24.4 & 332 & \(6 \cdot 8,8 \cdot 5\) & Yellow, blue (6). \\
\hline 49 Cygni . & July-Nov. & 2036.4 & +3154 & 755 & 715 & 636 & 557 & 2.8 & 49 & \(6{ }^{\circ} \mathrm{o}, 8.2\) & Yellow, blue. \\
\hline Pair in Cygnus & June-Nov. & \(205^{\circ} \mathrm{O}\) & & 816 & & 657 & 618 & 18.8 & & & \\
\hline P. xx. 465 Cygni & June-Nov. & 2059.6 & +41 10 & 818 & \(73^{8}\) & 659 & 620 & \(57 \cdot 4\) & 185 & 5.8, 8.0 & White, deep blue. \\
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
(x) A \(7{ }^{\circ} 5\) mag., ashy blue, at \(2 \mathrm{x}^{\circ}: 89^{\prime \prime} \cdot 3\). \\
(2) Cf. July list. A \(10^{\circ} 0\) mag. at \(135^{\circ}: 145^{\prime \prime \prime} 4\) from \(\epsilon^{1}\) and \(37^{\circ}: 120^{\prime \prime} \circ\) from \(\epsilon^{2}\). Several other minute stars between the pairs, two of which, \(45^{\prime \prime}\) apart, form the 'duplex debilissima' of Struve. \\
(3) Another pair in field \(n . f . ; 66^{\circ}, 7^{\circ} 4 ; 260^{\circ}: 17^{\prime \prime \cdot} 1 ;\) yellow, olive blue. \\
(4) In fine group of stars, one of which, 6.2 m \\
(5) Cf, August list. \(5^{\circ} 3\) has been thought va are usually best shown by putting the as to enlarge the spurious disc. \\
(6) Rapid rectilinear motion.
\end{tabular}} \\
\hline
\end{tabular}
OCTOBER (Mean Time of Transit at Greenzich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & \[
\begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}
\] & Posit Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & \({ }^{\circ}-1\) & \[
\left\lvert\, \begin{array}{cc}
\text { h. m. } \\
21 & \mathrm{~m}^{2}
\end{array}\right.
\] & \[
\begin{array}{r}
\text { h. m. } \\
22 \quad 22
\end{array}
\] & \[
\begin{array}{rrr}
\text { h. } & \text { m. } \\
23 & 3
\end{array}
\] & \[
\begin{array}{r|r|}
\text { h. m. } \\
2340
\end{array}
\] & \(\underline{\prime \prime}\) & - & & \\
\hline \(\delta\) Equulei * & July-Nov. & \(219^{\circ} \mathrm{O}\) & + 933 & 827 & 748 & 78 & 629 & \(40^{\circ}\) & 21 & \(4.5,10 \cdot 0\) & Yellow, purplish ( \(\mathbf{x}\) ). \\
\hline 3 Pegasi & July-Nov. & \(213^{\circ} \mathrm{O}\) & + \(6^{\circ} 7\) & 850 & 811 & 731 & 652 & 39.2 & 349 & \(5^{\circ} \mathrm{o}, 6{ }^{\circ}\) & White, grey (2). \\
\hline P. xxi. 248 Cephei & June-Dec. & 2135.5 & + \(5^{6} 5^{8}\) & 853 & 814 & 735 & 656 & 11.8 & 3 & 5•8, 7•5 & White, bluish (3). \\
\hline 'Garnet' star in Cepheus. & June-Dec. & \(2140^{\circ}\) & + 5815 & 858 & 819 & 739 & 7 o & - & - & Var. & Deep orange (4). \\
\hline Pair in Cepheus - & June-Dec. & \(2148{ }^{1}\) & + 5516 & 96 & 827 & 747 & 78 & 19.5 & 195 & 5.4,6.2 & White, ashy green. \\
\hline Cluster in Cepheus . & June-Dec. & 2154.8 & +54 17 & 913 & 833 & 754 & 715 & - & - & \(9{ }^{-1}\) & Very large, but poor. \\
\hline 29 Aquarii . & Aug.-Nov. & 2156.2 & \(-1731\) & 914 & 835 & 755 & 716 & 3.7 & 244 & 7'0, \(7^{\circ} 2\) & White, bluish. \\
\hline P. xxi. 40 Lacertæ
Cluster in Lacerta & June-Dec. & \(\begin{array}{ll}22 & 0.3\end{array}\) & +59 19 & 918 & 839 & 8 o & 720 & 183.4 & 73 & \(6 \cdot 5,7 \cdot 5\) & Both white (5). \\
\hline Cluster in Lacerta & July-Dec. & \(22 \quad 10.8\) & +49 18 & 929 & 849 & 810 & 731 & & & 8-10 & Fine, but straggling (6). \\
\hline 53 Aquarii & Aug. - Nov. & \(2220 \cdot 3\) & -17 19 & \(93^{8}\) & 859 & 820 & 740 & 8.2 & 305 & 6.0, 6.4 & Both white. \\
\hline \({ }_{\text {\% Cephei }}\) & July - Dec. & \(22 \quad 24^{\prime \prime} 9\) & +5750 & 943 & 93 & 824 & 745 & \(40 \cdot 8\) & 192 & Var. 57 & Yellow, deep blue (7). \\
\hline \({ }^{\mu}\) Pegasi \({ }^{\text {P }}\) ii \({ }^{\text {a }}\) & Aug.-Dec. & \(2237{ }^{\circ} 7\) & +29 \(3^{8}\) & 956 & 916 & 837 & 758 & 89.8 & 339 & \(3^{\circ} \mathrm{O}, 9^{\circ} \mathrm{o}\) & Deep yellow, bluish. \\
\hline P. xxii. 219 Aquarii
\(\tau^{2}\) Aquarii . & Aug.-Nov. & \(2242^{\circ} \mathrm{O}\) & -4 49 & 10 o & 920 & 841 & 8 2 & 3.6 & 253 & 6.8, \(7 \cdot 3\) & Yellow, white (8). \\
\hline \(\tau^{\mathbf{2}}\) Aquarii - . & Aug.-Nov. & 2243.6 & -14 12 & 10 I & 922 & 843 & 83 & \(132 \%\) & 293 & \(4^{\circ} \mathrm{O}, 9^{\circ} \mathrm{O}\) & Orange, blue. \\
\hline \({ }_{15}\) Lacertæ & Aug.-Dec. & 2246.9 & +42 42 & 105 & 925 & 846 & 87 & - & - & 5\% & Fine orange red. \\
\hline 83, 84 Aquarii & Aug.-Nov. & 2259.3 & -819 & 1017 & 938 & \(85^{8}\) & 819 & \(261{ }^{\circ}\) & 147 & 5.5.6.8 & White, red. \\
\hline  & Aug.-Feb. & 2347 & + \(5^{8} 43\) & 10 22 & 943 & 94 & 824 & 167'9 & 163 & 6.1, \(8 \cdot 3\) & Yellowish white, bluish. \\
\hline \(\psi^{\prime}\) Aquarii
P. xxiii. 69 Aquarii & Aug.-Dec. & \begin{tabular}{ll}
23 & 9 \\
\hline 1
\end{tabular} & -943 & 1028 & 948 & 99 & 830 & \(49^{\circ} 4\) & 312 & \(4 \cdot 0,8 \cdot 5\) & Orange, sky blue (9). \\
\hline P. xxiii. 69 Aquarii & Aug.-Dec. & 2317.8 & -95 & 10 35 & 956 & 917 & 838 & 4.8 & 253 & 6.8,7.7 & Reddish white, greyish blue. \\
\hline Red star in Andromeda
Nebula in Andromeda & Aug.-Feb. & 2318.7 & +40 58 & 10 36 & 957 & 918 & 838 & - & - & \(6 \cdot 5\) & Copper red. \\
\hline Nebula in Andromeda
\(\delta\) Sculptoris . . & Aug.-Feb. & \(2320 \cdot 4\) & +4154 & 10 \(3^{8}\) & 959 & 919 & 840 & - & - & - & Planetary, blue. \\
\hline \(\chi^{\delta}\) Sculptoris * & Oct. & \(2343^{\circ} \mathrm{O}\) & -28 46 & II I & 1021 & 942 & 93 & 74.3 & 297 & \(5^{\circ} \mathrm{O}, 9^{\circ} \mathrm{O}\) & White, bluish white. \\
\hline 6 Cassiopeir* *
Pair in Cassiopeia & Aug.-Feb. & 2343.2 & +61 35 & 11 & 1022 & 942 & 93 & 1.6 & 196 & 5'1, \(7^{\circ} 6\) & Golden, turquoise. \\
\hline Pair in Cassiopeia & Aug.-Feb. & 2355.5 & +5943 & 1113 & 1034 & 954 & \(9 \times\) & 58.9 & 270 & Var. \(7 \times 7\) & Ruby, deep blue (ro). \\
\hline \multicolumn{5}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(I) \(4^{\circ} 5\) is an excessively close pair, having the shortest period known among binary stars as yet, about ro years. \\
(2) Pretty little pair \(6^{\prime}\) south. \\
(3) A 7.5 mag., blue, at \(340^{\circ}: x 9^{\prime \prime} \cdot 8\). not well determined. \\
(4) Sir W. Herschel's 'garnet' star, now orange. Variable, 4-6 mag., but period
\end{tabular}}} & & \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(5) A \(99^{\circ}\) mag. at \(39^{\circ}: 90^{\prime \prime \prime} 3 ;\) a \(66^{\circ} 7 \mathrm{mag}\) at \(38^{\circ}: 23^{\prime \prime \prime} 7\), and a distant \(7^{\circ} 5 \mathrm{mag}\). \\
(6) 16 in length, followed by splendid field. \\
7) A is var. \(3^{\circ} 5\) to 45 mag . in \(5^{\mathrm{d}} 8^{\mathrm{h}} 47^{3 \mathrm{~m}}\). \\
(8) An 8 mag. at \(140^{\circ}: 48^{\prime \prime \prime} 5\). Moving. \\
(9) Cf. January list.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
NOVEMBER (Mean Time of Transit at Greenwich).

NOVEMBER (Mean Time of Transit at Greenwucn).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 30 & \[
\left\lvert\, \begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}\right.
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline dereal time at 9 P.M. & & h. & , & h. m. & \begin{tabular}{l}
h. m. \\
024
\end{tabular} & \[
\begin{gathered}
\text { h. m. } \\
\text { I } \quad 3
\end{gathered}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& \text { I } 39
\end{aligned}
\] & II & - & & \\
\hline P. xxii. 306 Pegasi & Aug.-Jan. & 23 & \(+3212\) & 818 & 739 & 659 & 624 & \(8 \cdot 5\) & 146 & 6.6,7*8 & White, deep blue. \\
\hline Pair in Andromeda. & Aug.-Feb. & \(23 \quad 4.8\) & +4721 & 821 & 74 x & 72 & 627 & \(15^{\circ} \mathrm{O}\) & 253 & 6.7,777 & Yellowish white, rosy. \\
\hline 94 Aquarii . & Sep.-Dec. & 2313.1 & -14 5 & 829 & 750 & 710 & 635 & 13.6 & 346 & \(5^{\circ} \mathrm{O}, 7^{\circ} 2\) & Deep yellow, deep blue ( \(\mathbf{x}\) ). \\
\hline Pair in Pisces & Sep.-Jan. & 2318.4 & + 36 & 834 & 755 & 716 & 640 & 7\% & 231 & 6.7, 8.9 & Red, ashy blue. \\
\hline P. xxiii. roo-r Cassiop. & Aug.-Feb. & 2324.7 & + 5755 & 840 & 8 & 722 & 46 & \(75^{\circ} 8\) & 269 & \(5^{\circ} \mathrm{O}, 7^{\circ} \mathrm{O}\) & Whitish blue, yellow \\
\hline P. xxiii. \(216-7\) Pegasi & Sep.-Ja & 23 47'1 & +11 17 & 93 & 823 & 744 & 79 & 18.7 & 282 & 6.3, \(7^{\circ} \mathrm{O}\) & Yellow, ashy yellow. \\
\hline \({ }_{\sigma}\) Cassiopeim . & Aug.-Feb. & 2353.2 & +54 59 & 99 & 830 & 750 & 715 & 2.9 & 327 & \(4^{* 8}, 7^{\prime 1}\) & Greenish white, blue. \\
\hline Nebula in Pegasus & Sep.-Jan. & 2357.3 & +1530 & 913 & 834 & 754 & 719 & - & - & - & Round disc, \(75^{\prime \prime}\) diam. \\
\hline Pair in Andromeda & Aug.-Feb. & \(\bigcirc 14 \%\) & +3736 & 930 & 850 & 8 II & 736 & \(64^{\circ} \mathrm{O}\) & 18 & \(7{ }^{\prime} 3,9^{\circ} 0\) & White, bluish (3). \\
\hline Cluster in Cassiopeia & & 7 & +70 & & 57 & 818 & 742 & - & - & 8 -18 & Large and straggling. \\
\hline 55 Piscium : . & Sep.-Jan. & - 33.9 & +20 49 & 949 & 910 & 831 & 755 & 6.4 & 193 & 5.2, 8.2 & Yellow, turquoise. \\
\hline Great Neb. in Andromeda & Aug.-Feb. & - \(36 \cdot 2\) & +40 35 & 952 & 9 & 833 & \(75^{8}\) & - & - & - & The 'Queen of the Nebulre' (4). \\
\hline Nebula in Cetus . . & Nov. & - \(4^{\circ} \mathrm{O}\) & -25 54 & 958 & 918 & 839 & 84 & - & & & \(40^{\prime}\) by \(6^{\prime}\), cream colour. \\
\hline P. 0.251 Piscium . & Sep.-Feb & - 53.5 & + 0 10 & 10 9 & 930 & 850 & 815 & 21. & \(3 \times 5\) & 6\%, 8.0 & Yellow, olive blue (5). \\
\hline Pair in Andromeda & Aug.-Feb. & - 53.6 & +44 6 & 10 & 930 & 850 & 815 & 77 & 192 & \(6^{\circ} \mathrm{O}, 7^{\circ} \mathrm{O}\) & White, ashy blue. \\
\hline 77 Piscium & Sep.-Feb. & - \(59{ }^{\circ} 9\) & + 418 & 10 15 & 936 & 857 & 8 & 32.8 & 83 & \(6.1,6.8\) & White, pale lilac. \\
\hline 37 Ceti . & Sep.-Feb. & I 8.7 & \(-813\) & 1024 & 945 & 96 & 830 & 49.5 & 331 & 5.5,7.5 & White, bluish white (6). \\
\hline P. i. 39-40 Cassiop. & July-Mar. & 113.3 & +64 4 & 1029 & 949 & 910 & 835 & \(52 \cdot 5\) & 350 & \(6.2,8{ }^{\circ}\) & White, red. \\
\hline P. i. \(85-87\) Piscium & Oct. -Feb. & 122.4 & + 722 & 1038 & 959 & 919 & 844 & 69.5 & 99 & \(6 \cdot 0,7.5\) & Yellow, blue. \\
\hline Pair in Andromeda. & Aug. Mar. & & 47 & 10 & 10 & & & \(\mathbf{x} 9\) & 220 & 5, 7*2 & White, blue (7). \\
\hline \(\gamma\) Arietis & Oct.-Mar. & \(147^{\circ} 2\) & +18 & 11 & 1023 & 944 & 99 & 8.8 & 179 & \(4^{\circ} \mathrm{O}, 4^{\circ} 2\) & Both white (8). \\
\hline , Trianguli & Oct.-Mar. & 257 & +29 46 & II 21 & 1042 & 10 & 927 & 3.6 & 78 & 5'1, 6.7 & Golden blue (8). \\
\hline P. ii. 38-39 Trianguli & Oct.-Mar. & 210.8 & +28 13 & II 26 & 10 47 & 107 & 932 & \(14^{17}\) & 210 & 6.7,7.5 & Yellow, blue. \\
\hline \({ }_{\gamma} \mathrm{Ceti}\) & Oct.-Feb. & 2374 & +245 & II & 1113 & 1034 & 959 & \(2 \cdot 8\) & 290 & \(3 \cdot 4 \cdot 7 \cdot 1\) & Whitish yellow, ash (8) \\
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(1) Moving together through space. \\
(2) Each of the stars is itself a close pair, and there are several other companions. \\
(3) Rapid rectilinear motion. \\
(4) See January and February lists.
\end{tabular}}} & \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(5) Moving, but probably not binary. \\
(6) Moving together through space. Another pair in field \(n \cdot p \cdot 7^{\circ} 0,10^{\prime} 1: 340^{\circ}\) 20" 5 . Yellow, violet. \\
(7) A blue \(8{ }^{\circ} 7\) mag. at \(179^{\circ}: 20^{\prime \prime} 3\). \\
(8) Cf. January list.
\end{tabular}}} \\
\hline & & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
DECEMBER (Mean Time of Transit at Greenzuich).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & 1 & 11 & 21 & 31 & \[
\left\lvert\, \begin{gathered}
\text { Dis- } \\
\text { tances }
\end{gathered}\right.
\] & Posit. Angles & Mag. & Colours and Remarks \\
\hline Sidereal time at 9 P.M. & & h. m. & \({ }^{\circ}\)-' & \[
\begin{gathered}
\text { h. m. } \\
\text { I } 42
\end{gathered}
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 2 \mathrm{~m} .
\end{aligned}
\] & \[
\mathrm{h}_{3} \mathrm{~m} \text { I }
\] & \[
\begin{aligned}
& \text { h. m. } \\
& 3 \text { 4I }
\end{aligned}
\] & " & - & - & - \\
\hline P. xxiii. 51 Androm. . & Aug.-Feb. & 2314.2 & +48 & 632 & 553 & 513 & 434 & \(78 \cdot 9\) & 305 & 6.0, 9* & Both yellow. \\
\hline Cluster in Cepheus & - & 23 29.3 & +72 18 & 647 & 68 & 528 & 449 & - & - & 8-11 & Scattered. \\
\hline 19 Piscium . & Oct.-Jan. & 2340.6 & + 251 & 658 & 619 & 540 & 5 o & - & - & 6.2 & Fine orange red. \\
\hline P. xxiii. 223 Cassiop. & Aug.-Feb. & \(2347 \cdot 8\) & +50 53 & 76 & 626 & 547 & 58 & \(42 \cdot 4\) & 197 & 6\%, \(9^{\circ} 0\) & White, bluish white. \\
\hline Cluster in Cassiop. & Aug.-Mar. & 2352.9 & +59 23 & 7 II & 631 & 552 & 513 & - & - & 7-9 & Stars large. \\
\hline Pair in Andromeda, & Aug.-Feb. & \(2353 \cdot 6\) & +33 6 & 7 II & 632 & 553 & 513 & 3.0 & 206 & 6.0,6.4 & Both yellow (x). \\
\hline Pair in Cassiop. & July-Mar. & \(2356 \cdot 7\) & +65 28 & 714 & 635 & 556 & 516 & \(15^{\circ} 2\) & 70 & \(5^{\circ} 8,7^{\circ}\) & Golden, ultramarine. \\
\hline a Andromedæ*. & Aug.-Feb. & - 2.5 & +28 28 & 720 & 641 & 62 & 522 & 71.0 & 273 & \(2{ }^{\circ} \mathrm{O}, 10 \cdot 4\) & Bluish white, purplish (2). \\
\hline Pair in Andromeda. & Aug. - Feb. & - 25.4 & +3257 & 743 & 74 & 624 & 545 & \(56 \cdot 3\) & 85 & \(5 \cdot 3,8.3\) & Reddish yellow, blue. \\
\hline \(\kappa\) Cassiopeir . & July-Mar. & - 26.5 & +62 18 & 744 & 75 & 626 & 546 & - & - & 43 & Surrounded by fine fields. \\
\hline Pair in Andromeda. & Aug.-Feb. & - \(29^{\circ} \circ\) & \(+3612\) & 747 & 77 & 628 & 549 & 11.7 & 312 & \(6.5,8.6\) & Reddish gold, blue. \\
\hline \(\pi\) Andromeds & Aug.-Feb. & - \(30 \cdot 7\) & +33 5 & 748 & 79 & 630 & 550 & \(36 \cdot 3\) & 173 & \(4.2,8.0\) & White, blue, \\
\hline Cluster in Cassiop. & July-Mar. & - \(36 \cdot 8\) & \(+6110\) & 754 & 715 & 636 & 556 & - & - & 8.5-9.5 & Fine cluster. \\
\hline P. o. 175-6 Androm. . & Aug.-Feb. & - \(40 \cdot 2\) & +30 19 & 758 & 718 & 639 & 6 - & \(46 \cdot 4\) & 54 & 6'9, \(7^{\circ}\) & Yellow, deeper yellow. \\
\hline 65 Piscium . . & Sept.-Feb. & - \(43^{\circ} 7\) & +20 49 & 8 I & 722 & 643 & 63 & 4.4 & 298 & 6.1, \(6 \cdot 4\) & Both whitish yellow. \\
\hline 26 Ceti . . . & Sept. -Feb. & - 57.9 & + 046 & 815 & 736 & 657 & 618 & \(16^{\circ}\) & 252 & 6.2, \(9^{\circ} 0\) & White, lilac. \\
\hline \(\psi^{\prime}\) Piscium & Sept.-Feb. & - 59.5 & +20 51 & 817 & \(73^{8}\) & \({ }^{6} 5^{8}\) & 619 & \(30 \%\) & 160 & \(47.4{ }^{\circ} 9\) & Both greenish yellow (3). \\
\hline \(\sigma^{2}\) Piscium . & Aug.-Feb. & - 59.9 & +31 34 & 817 & 738 & 659 & 620 &  & 294 & \(6 \cdot 2,9.5\) & Deep yellow, blue (4). \\
\hline Pair in Pisces & Aug.-Feb. & I 6.4 & +3128 & 824 & 745 & 75 & 626 & 19.6 & 249 & \(6.7,80\) & White, blue. \\
\hline Pair in Cassiop. & July-Mar. & I 29.8 & +58 3 & 847 & 88 & 729 & 649 & \(24^{\prime 7}\) & 75 & 6.5, 7\% 7 & Green, red. \\
\hline Nebula in Perseus & July-Mar. & \(135{ }^{\prime} \mathrm{I}\) & +60 1 & 853 & 813 & 734 & 655 & - & - & - & White, elliptical (5). \\
\hline Red star in Cassiop. & - & 1 \(477^{\circ} 4\) & +69 \(3^{8}\) & 95 & 826 & 746 & 77 & - & - & \(7{ }^{\circ}\) & Fine red. \\
\hline \(\lambda\) Arietis & Oct.-Mar. & 1 51.6 & +23 2 & 98 & 830 & 750 & 711 & \(37^{\circ} 9\) & 46 & \(4.5,7^{\circ} \mathrm{C}\) & White, olive blue. \\
\hline a Piscium & Oct.-Feb. & 1 \(56^{\circ} \mathrm{I}\) & + 213 & 914 & 834 & 755 & 716 & 3.0 & 323 & \(4^{\prime}\) r, \(5 \cdot 4\) & Green, ashy green (6). \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
(1) In slow movement. \\
(2) Change, owing to proper motion of \(\alpha\). \\
(3) A ro mag. star in \(121^{3}: 98^{\prime \prime} \cdot 2\).
\end{tabular}} & & & & \multicolumn{5}{|l|}{\begin{tabular}{l}
(4) A \(9^{\circ} 9\) mag. at \(234^{\circ}:{ }_{13} 8^{\prime \prime} \cdot 4\). \\
(5) Double nebula, the \(s\). p. a little the brighter. \\
(6) Probably slow binary.
\end{tabular}} \\
\hline
\end{tabular}
DECEMBER (Mean Time of Transit at Greenteich).


CIRCUMPOLAR OBJECTS.


\section*{DAILY ACCELERATION OF SIDEREAL ON MEAN TIME.}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline day & h. m. & days & h. m. \\
\hline I & - 4 & 12 & - 47 & 23 & 130 & 34 & 214 & 44 & 253 & 54 & \(33^{2}\) & 64 & 412 & 74 & 451 & 84 & 530 \\
\hline 2 & - 8 & 13 & - 51 & 24 & I 34 & 35 & 218 & 45 & 257 & 55 & \(33^{6}\) & 65 & 416 & 75 & 455 & 85 & 534 \\
\hline 3 & - 12 & 14 & - 55 & 25 & I \(3^{8}\) & 36 & 222 & 46 & 31 & 56 & 340 & 66 & 419 & 76 & 459 & 86 & \(53^{8}\) \\
\hline 4 & - 16 & 15 & - 59 & 26 & 142 & 37 & 225 & 47 & 35 & 57 & 344 & 67 & 423 & 77 & 53 & 87 & 542 \\
\hline 5 & - 20 & 16 & 13 & 27 & I 46 & 38 & 229 & 48 & \(\begin{array}{ll}3 & 9\end{array}\) & 58 & 348 & 68 & 427 & 78 & 57 & 88 & \(54^{6}\) \\
\hline - & - 24 & 17 & 17 & 28 & 150 & 39 & 233 & 49 & 313 & 59 & 352 & 69 & 431 & 79 & 5 II & 89 & 550 \\
\hline 7 & - 28 & 18 & 111 & 29 & I 54 & 40 & 237 & 50 & 317 & 60 & 356 & 70 & 435 & 80 & 515 & 90 & 554 \\
\hline 8 & - 31 & 19 & 115 & 30 & \(15^{8}\) & 41 & 241 & 51 & 321 & 6 & 40 & 71 & 439 & 81 & 518 & GI & \(55^{8}\) \\
\hline 9 & - 35 & 20 & 119 & 31 & \(2 \quad 2\) & 42 & 245 & 52 & 324 & 62 & 44 & 72 & 443 & 82 & 522 & 92 & 62 \\
\hline 10 & - 39 & 21 & 123 & 32 & 26 & 43 & 249 & 53 & 328 & 63 & 48 & 73 & 447 & 83 & 526 & 93 & 66 \\
\hline II & - 43 & 22 & 126 & 33 & 210 & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{OBJECTS SUITABLE FOR FOUR TO SEVEN-INCH TELESCOPES.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline 34 Piscium & Dec.-Feb. & \[
\begin{array}{ll}
\text { h. } & \text { m. } \\
0 & 4^{*}
\end{array}
\] & \(+10^{\circ} 3^{\prime}\) & \(7 \times 8\) & \(160^{\circ}\) & 5\%, 10\% 2 \\
\hline 26 Andromedæ & Aug.-Feb. & - 12.7 & +439 & 59 & 240 & \(6 \%, 10{ }^{1}\) \\
\hline 42 Piscium & Dec.-Feb. & - 16.5 & +1251 & \(29^{\circ} 7\) & 338 & \(6.6,110\) \\
\hline 12 Ceti & Dec.-Feb. & - \(24^{\circ}\) & - 435 & \(8 \cdot 6\) & 187 & \(6.0,10 \cdot 9\) \\
\hline P. O. 245 Piscium & Oct.-Feb. & - \(5^{\circ} 3\) & +20 47 & - \(75{ }^{*}\) & 93 & \(6.7,8.2\) \\
\hline P. i. If Piscium & Sept.-Feb. & 1 6.7 & +2928 & 10.6 & 258 & \(6.0,10 \cdot 0\) \\
\hline \({ }_{\phi}\) Piscium & Oct.-Feb. & 175 & +2359 & 77 & 227 & 5\%2, 100 \\
\hline 42 Ceti (1) & Dec.-Feb. & \(114^{\circ}\) & - 16 & 1.45 & 355 & \(67,7.5\) \\
\hline \(\psi\) Cassiopeiæ (2) & Aug. -Feb. & 1179 & +6732 & 28.7 & 107 & \(4.5,97\) \\
\hline P. i. 123 Piscium (3) & Nov.-Feb. & \(130^{\circ} 1\) & + 74 & \(1 \cdot 33\) & 33 & 7 2, 7 -4 \\
\hline 103 Piscium (4) & Nov.-Feb. & \(133^{\prime} 1\) & +16 3 & \(1 \cdot 31\) & 297 & \(6{ }^{\circ} 9,9{ }^{\circ}\) \\
\hline e Trianguli . & Nov.-Feb. & 156.3 & + 3244 & \(4^{\circ}\) & 118 & \(5 \cdot 6,10 \cdot 8\) \\
\hline 48 Cassiopeir & July-Mar. & \(152 \cdot 6\) & +70 21 & \(0 \cdot 96\) & 267 & \(5^{\circ} \mathrm{O}, 7{ }^{\circ}\) \\
\hline 10 Arietis (5). & Nov.-Feb. & 157.1 & +2523 & 104 & 50 & \(5{ }^{\circ} 8,8 \cdot\) \\
\hline P. ii. 96 Arietis & Nov.-Mar. & 223.9 & +24 44 & 12.1 & 182 & \(6 \cdot 3,10 \% 7\) \\
\hline \({ }_{\gamma}\) Ceti & Dec.-Mar. & 229.9 & \(+56\) & 7.8 & 84 & \(5^{\circ} \mathrm{O}, \quad 9 \times 9\) \\
\hline Pair in Cetus & Dec.-Mar. & \(235^{\circ}\) & + 424 & 171 & 295 & \(7{ }^{\circ} \mathrm{O}, 89\) \\
\hline 84 Ceti (5) & Dec.-Mar. & 2354 & 110 & 47 & 324 & \(5 \cdot 8,9.6\) \\
\hline - Persei (6) & Sept.-Mar. & \(236 \cdot 4\) & +4845 & 17.2 & 299 & \(4 \cdot 2,9 \cdot 8\) \\
\hline Pair in Perseus. & Oct.-Mar. & 2401 & +35 6 & 1.53 & 161. & \(6.3,8.7\) \\
\hline \(\pi\) Arietis & Dec.-Mar. & \(24^{\circ} 9\) & +170 & 3.3, \(25^{\circ} \mathrm{z}\) & 122, 109 & \(5.5,8.2,110\) \\
\hline 4 A Arietis & Dec.-Mar. & 243.4 & +2648 & 21.2, 34.0 & 266, 204 &  \\
\hline Pair in Cepheus & & \(250 \cdot 9\) & \(+7858\) & 4.5 & 230 & 54,94 \\
\hline e Arietis (7). & Dec.-Mar. & \(25^{2} 6\) & +2054 & - 39 & 201 & \(5 \cdot 4,6 \cdot 3\) \\
\hline 50 Arietis & Dec.-Mar. & \(254^{\prime} 1\) & +1733 & \(2 \cdot 1\) & 67 & 7*1, 909 \\
\hline \(\rho^{2}\) Eridani (8). & Dec.-Feb. & 25711 & \(-88\) & 2.5 & 85 & 5*4, 9*5 \\
\hline Pair in Cassiopeia (9) & Aug.-Apr. &  & +717 & - 98 & 213 & \(7{ }^{\circ} \mathrm{O}, 7{ }^{\circ}\) \\
\hline 12 Eridani (10) & Dec.-Jan. & \(\begin{array}{ll}3 & 712\end{array}\) & -29 27 & 2.6 & 312 & \(4^{\circ} \mathrm{o}, 9.5\) \\
\hline \(\tau^{*}\) Eridani (i1) & Dec.-Jan. & 3145 & -22 11 & 54 & 287 & \(5^{\circ} \mathrm{O}, \quad 9 \cdot 5\) \\
\hline Pair in Perseus. & Nov.-Mar. & \(317 \%\) & +33 & 39 & 153 & 64,99 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
(1) Binary. \\
(2) \(9^{\circ} 7\) is double, \(10^{\circ} 6: 256^{\circ}: 3^{\prime \prime} 1\). \\
(2) Slow binary, a \(10^{\circ} 0\) mag. at \(71^{\circ}: 77^{\prime \prime} 3\). \\
(4) \(n_{.} p_{0}\), ro5 Piscium ; in the same field. \\
(5) Moving together through space. \\
(6) Moving together through space; a \(9^{\circ} \circ\) mag. at \(218^{\circ}: 69^{\prime \prime} \cdot 2\), not connected with the system
\end{tabular}}} & \multicolumn{4}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
(7) Binary. \\
(8) \(9^{\circ} 5\) variable. \\
(9) Binary, an \(11^{\circ} 6\) mag. in \(307^{\circ}: 20^{\prime \prime}\). \\
(10) Sometimes called a Fornacis. Very rapid common proper motion. \\
(ri) A \(10 \times 5\) at \(100^{\circ}: 40^{\prime \prime \prime} \circ\); a \(10 \circ 7\) at \(293^{\circ}: 123^{\prime \prime} \circ\); a \(10^{\circ} 7\) at \(276^{\circ}: 130^{\prime \prime \prime} \circ\); and a \(10 \circ\) at \(236^{\circ}: 160^{\prime \prime \prime}\). .
\end{tabular}}} \\
\hline & & & & & & \\
\hline
\end{tabular}

\footnotetext{
* Distances under \(z^{\%} \%\) are given in this list to the nearest hundiedth of a second of arc.
}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline 2 (Hevel) Camelopardi & Oct.-Mar. & \[
\begin{array}{cc}
\text { h. m. } \\
3 & 19^{\circ} 8
\end{array}
\] & \(+59^{\circ} 3^{\prime}\) & \(2 \%_{2}^{1 /}\) & \(163{ }^{\circ}\) & 4\%, 8.5 \\
\hline \(\zeta\) Persei ( I ) & Nov.-Mar. & \(347{ }^{\circ}\) & +3132 & \(12 \cdot 8,32 \cdot 6\) & 208, 287 & \(3^{\circ} 0,8 \% 7,11 \cdot 1\) \\
\hline 9 (Hevel) Camelopardi & Oct. - Apr. & \(347 \%\) & +60 46 & \(2 \cdot 2\) & 41 & \(5^{\circ} 2,8 \cdot 2\) \\
\hline 30 Eridani . . . & Dec.-Feb. & \(347^{\circ} 1\) & \(-542\) & 8.2 & 135 & \(6 \cdot 5,10 \cdot 5\) \\
\hline Pair in Perseu & Nov.-Mar. & 349.5 & +4133 & 8:8 & 149 & \(6 \%, 9 \%\) \\
\hline Pair in Cepheus (2) & , & 3 50'9 & +80 23 & 96 & 35 & 5*7, \(7^{\circ}\) \\
\hline Pair in Perseus. & Nov.-Mar. & \(352 \cdot 1\) & \(+3829\) & I 60 & 329 & \(6 \cdot 2,9 \% 7\) \\
\hline Pair in Perseus (3) & Nov.-Mar. & \(359{ }^{\circ} 7\) & \(+339\) & 1.08 & 204 & \(6 \%, 9{ }^{\circ}\) \\
\hline P. iii. 242 Persei (4) & Nov.-Mar. & 400 & \(+3747\) & 2.7 & 138 & \(6 \cdot 8,9.5\) \\
\hline P.iv. 53 Tauri . & Nov.-Mar. & 4157 & \(+2030\) & \(2^{\prime} 1\) & 171 & \(5 \cdot 6, \quad 8 \cdot 8\) \\
\hline 56 Persei & Nov.-Mar. & \(417{ }^{\circ} 2\) & \(+3342\) & 44 & 50 & \({ }^{\circ} 5, \quad 9^{\circ} 2\) \\
\hline 2 Camelopardi & Nov.-Apr. & \(430 \cdot 9\) & +53 15 & 1.62 & 92 & \(5 \%, 7 \cdot 5\) \\
\hline 7 Camelopardi (5) & Nov.-Apr. & \(44^{8 \cdot}\) & + 5334 & I \({ }^{\prime} 24\), & 309, 239 & \(4^{\circ} 6,7{ }^{\circ} 9,1{ }^{\circ} 0\) \\
\hline 5 Aurigæ . . & Oct.-Apr. & \(45^{2} 5\) & + 3913 & 27 & - 247 & \[
6 \cdot 0, \quad 97
\] \\
\hline 14 Orionis & Dec.-Mar. & \(5 \quad 16\) & \(+820\) & I'15 & 2 C 3 & \(5^{\circ} 8,6{ }^{\circ}\) \\
\hline 16 Aurigæ (6) & Nov.-Apr. & \(510 \times 7\) & +33 15 & 4*3 & 57
88 & \[
5^{\circ} 0,10^{\circ} 6
\] \\
\hline Leporis 28 & Dec.-Feb. & \(515 \%\) & -21 22 & 43 & 283 & \[
6 \cdot 0,10 \cdot 5
\] \\
\hline Pair in Orion & Dec.-Mar. & \(5 \quad 18.6\) & - 059 & 1.43 & 171 & \(6 \cdot 5,6 \cdot 7\) \\
\hline \(\eta\) Orionis & Dec & \(5 \quad 18.7\) & - 230 & \(1{ }^{\circ} 0\) & 85 & \(4^{\circ} \mathrm{O}, 6.0\) \\
\hline \(\psi^{2}\) Orionis & Dec.-Mar. & \(520 * 8\) & \(+259\) & \(2 \cdot 7\) & 324 & \(5^{\circ} 4,9{ }^{\circ}\) \\
\hline \(\beta\) Lepuris & Dec.-Feb. & 523.4 & \(-205 \mathrm{I}\) & 2.5 & 285 & 3'5, \(11{ }^{\circ} 0\) \\
\hline 31 Orionis & Dec.-Mar. & \(523{ }^{\circ} 9\) & - 111 & 12.6 & 88 & \(5^{\circ} 4,10 \cdot 5\) \\
\hline 33 Orionis & Dec.-Mar. & \(525^{\circ}\) & \(+312\) & 1776 & 28 & \(6{ }^{\circ}, 77^{\circ}\) \\
\hline Pair in Taurus & Nov.-Mar. & \(530 \times 1\) & \(+2652\) & I'06 & 178 & \(6.5,7.0\) \\
\hline 42 Orionis & Dec.-Mar. & \(529 \cdot 8\) & -455 & I 73 & 218 & \(5^{\circ} 2,8 \cdot 9\) \\
\hline Pair in Camelopardus & Nov.-Apr. & 537.5 & 6246 & 1'54 & 23 & , \\
\hline Pair in Orion & Nov.-Mar. & \(54 \mathrm{I} \cdot 5\) & +2050 & 85,7 & 15, 1 & \(6 \cdot 2,8 \cdot 0,7 \cdot 5\) \\
\hline 52 Orionis & Dec.-Mar. & \(541{ }^{\circ} 9\) & \(+625\) & 61 & 204 & \(6 \cdot 1,6.5\) \\
\hline Leporis 61 & Dec.-F & & -1431 & 27 & 79 & \(6{ }^{\circ} 0,9.4\) \\
\hline \(\theta\) Aurigæ (7). & Nov.-Mar. & \(55^{\circ} \mathrm{O}\) & \(+3712\) & 24 & 359 & \(3 \cdot 0,8 \cdot 6\) \\
\hline 3 Monocerotis & -M & 5 56.5 & - 10 36 & 1.62 & 355 & -0, \(9^{\circ} 7\) \\
\hline Pair in Auriga & Nov.-Mar. & \(559^{\circ} 7\) & \(+3617\) & 1.73 & \[
277
\] & \[
7^{\circ} 0,10^{\circ}
\] \\
\hline 4 Monocerotis & Dec.-Mar. & \(6 \quad 3 \cdot 1\) & - 117 & -2 & 178, 244 & \[
6 \cdot 7,10 \cdot 5,11 \cdot 5
\] \\
\hline Pair in Monoceros & Dec.-Mar. & 6 6'1 & \(-43^{8}\) & \(0 \cdot 98\) & 70 & \(6 \cdot 2,8 \cdot 7\) \\
\hline 4 Lyncis & Nov.-May & 6 II'9 & + 5925 & \(0 \times 95\) & IOI & \(6 \cdot 2,7 \cdot 5\) \\
\hline Pair in Camelopardus & Jan & 615.3 & \(+7036\) & 5 & & 60, 109 \\
\hline Pair in Monoceros & Jan.-Apr. & \(616 \cdot 1\) & -11 42 & \(3 \cdot 8\) & , & \(6 \cdot 2,9{ }^{\circ} 9\) \\
\hline 54 Aurigæ . & Jan.-Apr. & \(632 \cdot 4\) & +28 22 & & \[
37
\] & \[
6 \circ, 8 \circ
\] \\
\hline \({ }^{15}\) Monocerotis (8) & Jan.-Apr. & \[
634: 7
\] & \(+10\) & \[
3 \cdot 0,16 \cdot 9
\] & \[
211,13
\] & Var. \(8 \%\), 110 \\
\hline Canis Maj. 29 . & Feb.-Apr. & \[
643 \cdot 8
\] & \[
-151
\] & \[
0.97
\] & \[
290
\] & \[
6 \cdot 0, \quad 8 \cdot 7
\] \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(x) A \(9^{\circ} 3\) at \(198^{\circ}, 89^{\prime \prime} 1\), and a \(10^{\circ} 0\) at \(185^{\circ}: 119^{\prime \prime \circ} 5\). \\
(2) Binary. \\
(3) A \(12{ }^{\circ} 5 \mathrm{mag}\). at \(119^{\circ}: 34^{\prime \prime} 7\). \\
(4) Rapid common proper motion, in which 50 Persei, \(12^{\prime}\) distant, joins. Parallax insensible. \\
(5) 8.7 mag. of a very dusky hue.
\end{tabular}}} & \multicolumn{4}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
(6) A pair with double companion in field, \(32^{5} f\). and \(10^{\prime}\) north of 16 . \\
(7) 8.6 possibly variable. Several faint distant companions. \\
(8) In the midst of a scattered cluster, containing several pairs.
\end{tabular}}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline 15 Lyncis (1). & Nov.-May & \[
{ }_{6}^{\mathrm{h} .} \mathrm{m}_{47} .4
\] & \(+58^{\circ} 35^{\prime}\) & 0.73 & \(360^{\circ}\) & \(5^{\circ} 0,7 \% 3\) \\
\hline \({ }^{\text {a }}\) Geminorum & Dec.-Apr. & 7115 & +1644 & 9.5 & 33 & 3.5, 9*8 \\
\hline P. vii. 52 Canis Minor & Dec.-Apr. & 7115 & + 930 & \(1 \cdot 28\) & 113 & \(7^{\circ} \mathrm{O}, 7^{\circ}\) \\
\hline 30 Canis Maj. . . & Jan.-Mar. & \(714 \%\) & -24 45 & \(7 \cdot 8,14 \cdot 3\) & 90, 80 & \(6 \cdot 0,10 \cdot 5,11 \cdot 2\) \\
\hline P. vii. 116 Monocerotis. & Jan.-Apr. & 722.5 & -11 20 & \(0 \cdot 80,25^{\circ}, 23^{\circ} 4\) & 166, 313, 157 & \(6 \cdot 0,8 \cdot 2,8 \cdot 9\), \(10 \cdot 0\) \\
\hline Pair in Gemini & Dec.-May & \(727 \times 9\) & +31 12 & 0.82 & 332 & \(5.5,6.5\) \\
\hline \({ }_{\pi}\) Geminorum & Dec.-May & \(74^{\prime} 1\) & \(+3342\) & 22.0 & 212 & 5\%, 10.8 \\
\hline Pair in Canis Minor. & Dec.-May & 7467 & + 341 & \(1 \cdot 20\) & 43 & \(7{ }^{\circ}, 17^{\circ}\) \\
\hline Pair in Cancer & Dec.-May & \(754 \%\) & +2354 & 27 & 333 & \(6 \cdot 1,10 \cdot 7\) \\
\hline \({ }_{11}\) Cancri & Dec.-May & \begin{tabular}{lll}
8 & 1 \\
\hline
\end{tabular} & +2749 & \(3^{\circ}\) & 218 & \(6.9,10 \cdot 4\) \\
\hline Pair in Lynx & Dec.-June & \(87{ }^{\circ} \mathrm{O}\) & +4323 & \(4{ }^{2}\) & 294 & \(6.7,10 \cdot 5\) \\
\hline Pair in Argo (2) . & Feb.-May & \(834^{\circ}\) & -1920 & 4.3 & 104 & \(6.5,10 \cdot 5\) \\
\hline Pyxidis 17 & Feb.-May & \(834^{\circ} 2\) & \(-2217\) & \(1 \cdot 37\) & 34 & \(6.0,9{ }^{\circ}\) \\
\hline \(\iota^{2}\) Cancri & Dec.-May & \(847 \%\) & +31 1 & 142 & 328 & \(5 \cdot 8,6 \cdot 2\) \\
\hline c Ursæ Maj. (3) & Dec.-June & 8514 & +48 29 & \(9 \cdot 6\) & 357 & \(3^{\circ} 2,10 \cdot 2\) \\
\hline \(\sigma^{2}\) Ursæ Maj. (4) & Dec.-June & \(9 \quad 004\) & \(+6736\) & 24 & 233 & \(5 \cdot 1,8 \cdot 7\) \\
\hline 37 Lyncis & Dec.-June & 912.8 & +51 44 & \(5 \cdot 5\) & 117 & \(6{ }^{\circ}, 10 \cdot 6\) \\
\hline \(\kappa\) Leonis & Dec.-May & 918.0 & +2641 & 34 & 205 & \(5{ }^{\circ}, 10 \cdot 2\) \\
\hline \(\omega\) Leonis (5). & Jan.-June & 922.4 & +933 & \(0 \cdot 68\) & 100 & \(6.0,6 \cdot 4\) \\
\hline 3 Leonis & Jan.-June & 922.4 & + 84 I & \(25^{.1}\) & 79 & \(6.0,10 \cdot 8\) \\
\hline Pair in Leo. & Jan. - June & 932.6 & + I1 17 & 8.3 & 103 & \(6.7,10 \cdot 2\) \\
\hline Felis 15 . & Mar.-June & \(936 \%\) & \(-1758\) & \(3 \cdot 1\) & 261 & \(7{ }^{12}\), 110 \\
\hline P. x. 23 Leonis & Feb.-June & 10 10\% & +18 18 & \(\bigcirc \cdot 76\) & 217 & \(6 \cdot 5,7 \cdot 5\) \\
\hline Felis 54. & Mar.-June & 10 16.2 & \(-2158\) & \(2 \cdot 0\) & 189 & \(6.5,9{ }^{\circ}\) \\
\hline P. x. 94 Sextantis . & Mar.-June & 10 25.3 & \(-73\) & \(2 \cdot 8\) & 166 & \(6.0,9 \%\) \\
\hline Pair in Ursa Maj. & Feb.-June & 1041.5 & +4142 & \(0 \cdot 84\) & 330 & 6.5. 7.5 \\
\hline \(\psi\) Crateris & Apr.-June & 116 & \(-1753\) & \(0 \cdot 45\) & 149 & \(6.2,6.9\) \\
\hline \(\nu\) Ursm Maj. & Feb.-June & 1112.3 & +33 43 & 7 \% & 147 & \(3 \cdot 8,9.6\) \\
\hline \(\gamma\) Crateris (6) . . & Apr.-June & \(1119{ }^{\circ}\) & -174 & \(5^{1}\) & 98 & \(4{ }^{\circ}\), 10\% \\
\hline Pair in Ursa Maj. (7). & Apr.-Aug. & II 25.8 & +61 43 & 1.26 & 65 & \(6 \cdot 3,7 \%\) \\
\hline P. xi. 126 Virginis. & Mar.-June & II 32.6 & - 148 & 4.9 & 279 & \(6 \cdot 2, \quad 97\) \\
\hline Pair in Can. Ven. & Mar.-June & II 50.4 & \(+3^{6} \quad 5\) & 1-55 & 122 & \(6.5,9{ }^{\circ}\) \\
\hline Pair in Can. Ven. & Mar.-June & \(125^{\circ}\) & +4032 & 121 & 338 & \(6.2,70\) \\
\hline Pair in Comæ Ber. & Mar.-June & 12118 & +29 34 & 8.2 & 277 & \(6.2,10 \cdot 5\) \\
\hline P. xii. 104 Corvi & Apr.-June & 1224.2 & -1245 & 1.81 & 354 & \(6.2,10 \cdot 2\) \\
\hline Pair in Corvus . & Apr.-June & 1229.8 & \(-1612\) & 11.2 & 258 & \(6.7,11.2\) \\
\hline 35 Comæ Ber. (8) . & Apr.-July & \(1247 \%\) & +2152 & 1 \(37,28.8\) & 68, 125 & \(5^{\circ 2}, 8 \cdot 0,9 \cdot 2\) \\
\hline \[
\begin{aligned}
& 46 \text { Virginis } \\
& \text { Hydræ } 348
\end{aligned}
\] & Apr.-June & \[
1254 \%
\] & - 245 & 144 & \({ }^{151}\) & \[
5 \cdot 4, \quad 9.5
\] \\
\hline \begin{tabular}{l}
Hydræ 348 \\
P. xii. 268 Can. Ven.
\end{tabular} & Apr.-June & \[
1257 \%
\] & \(-1958\) & 0.071 & \[
133
\] & \[
6 \cdot 2,6 \cdot 2
\] \\
\hline P. xii. 268 Can. Ven. & Apr.-June & \(13 \quad 0 \cdot 7\) & +2938 & \(6 \cdot 5,40 \cdot 3\) & 219, 7 & \(6.0,10 \cdot 5,12.5\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(1) Binary. \\
(2) Red, blue. \\
(3) Very large common proper motion, in which a neighbouring star, 10 Ursæ, participates. \\
(4) Binary, closing rapidly.
\end{tabular}}} & & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
(5) Binary, period about 115 years \\
(6) Common proper motion. \\
(7) Binary, period \(94 \frac{1}{2}\) years. \\
(8) Binary.
\end{tabular}}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline Pair in Can. Ven. (r) . & Apr.-June & \[
\begin{array}{l|c}
\text { h. } & \text { m. } \\
\text { I3 } & 6.7
\end{array}
\] & \(+3{ }^{\circ} 4^{\prime \prime}{ }^{\prime \prime}\) & 1:419 & \(348^{\circ}\) & \\
\hline 25 Can. Ven. (2) . & Apr.-June & 1332.4 & +36 \(5^{2}\) & 0.80 & 151 & \(6 \cdot 2,8 \cdot 2\) \\
\hline \(\tau\) Boötis (3) & Apr.-June & 13418 & +18 1 & 8.9 & 353 & \(4 \cdot 1,11 \cdot 5\) \\
\hline P. xiii. 242 Can. Ven. & Apr.-June & \(1349 \%\) & + 3028 & \(1 \cdot 81\) & 18 & \(7.0, \quad 9.6\) \\
\hline Pair in Boötes . & Apr.-June & \(14 \begin{array}{ll}18 \\ 1 & 8\end{array}\) & + 3519 & \(14^{\circ} 2\) & 70 & 6.4, 10* \\
\hline P. xiv. 20 Boötis & May-July & \(14 \quad 8 \cdot 3\) & \(+123 \mathrm{r}\) & 195 & 249 & \(6 \cdot 6,9 \cdot 3\) \\
\hline \(\phi\) Virginis . & May-July & 1422.3 & - 143 & \(4{ }^{19}\) & 112 & \(5^{\circ} 2, \quad 94\) \\
\hline Pair in Boötes & May-Aug. & 1428.5 & +49 41 & \(5{ }^{\circ}\) & 131 & 7*2, 11.0 \\
\hline Pair in Boötes & May-Aug. & \(1436 \cdot 3\) & +49 II & \(7{ }^{\circ}\) & 102 & 7\%3, 11.0 \\
\hline Libre 23 & May-June & \(1442 \cdot 1\) & \(-16{ }^{2}\) & \(1 \cdot 27\) & 236 & \[
70, \quad 8 \circ
\] \\
\hline Pair in Boötes & May-July & 1443.4 & +24 50 & 1.50 & 55 & \(6 \cdot 3, \quad 7 \cdot 4\) \\
\hline Pair in Boötes & May-July & \(144^{8}{ }^{\circ}\) & \(+1610\) & 1.49 & 195 & \(6 \cdot 2,7{ }^{\circ}\) \\
\hline Pair in Boötes & May-July & 1451.3 & \(+3245\) & 43 & 113 & \(6 \cdot 2,10 \cdot 5\) \\
\hline Pair in Boötes & May-Aug. & 1510.6 & \(+3^{8} 44\) & \(1 \cdot 38\) & 257 & \(6 \cdot 2,8 \cdot 2\) \\
\hline Pair in Libra (4) & May-July & \(15 \begin{array}{lll}12.5\end{array}\) & \(-2351\) & 100 & 180 & \(7{ }^{\circ} \mathrm{O}, 9^{\circ} \mathrm{O}\) \\
\hline 5 Serpentis (5) & May-July & 1513.4 & + 213 & \(10 \%\) & 38 & \(4 \%, 10 \cdot 0\) \\
\hline Coronæ 1 (6) & May-July & 1513.5 & +27 15 & \(1 \cdot 22\) & 308 & \(5 \cdot 6,6 \cdot 1\) \\
\hline 6 Serpentis. & May-July & 1515.2 & + 18 & \(2 \cdot 3\) & 13 & \(4 \% 7,94\) \\
\hline \(\eta\) Coronæ Bor. (7) & May-Aug. & 1518.5 & +3042 & 0.65 & 182 & \(5 \%, 6 \%\) \\
\hline \(\mu^{2}\) Boötis (8) . & May-Aug. & \(15^{20} 3\) & +37 45 & \(0 \cdot 78\) & 104 & \(6 \cdot 5,7.8\) \\
\hline 2 Scorpionis & May-June & 1546.7 & -25 0 & \(2 \cdot 6\) & 279 & 5.5, 9\% \\
\hline II Scorpionis . & May-July & 1613 & \(-1226\) & \(3 \cdot 3\) & 256 & 6.1, 10\%4 \\
\hline Pair in Cor. Bor. & May-Aug. & \(16 \quad 73\) & +33 \(3^{8}\) & 5.4 & 262 & \(6.0,10 \cdot 5\) \\
\hline Pair in Cor. Bor. & May-July & \(168 \cdot 0\) & +26 58 & 2.8 & 136 & 6\%2, 10\% 7 \\
\hline Pair in Serpens & May-July & 1616.0 & + 126 & 2.6 & 1 & \(7{ }^{\circ} 2, \quad 909\) \\
\hline \({ }^{7}\) Draconis & Apr.-Aug. & 1622.4 & +61 46 & 5*2 & 142 & \\
\hline Draconis 99. & Apr.-Aug. & \(1622 \cdot 3\) & +61 57 & \(1 \cdot 16\) & & \(6.2,74\) \\
\hline Pair in Hercules & May-Aug. & 1623.3 & +26 15 & 1. 26 & 211 & \(6 \cdot 6,7 \%\) \\
\hline \(\zeta\) Herculis (9) . & May-Aug. & \(1637 \circ\) & +31 49 & 1.65 & 82 & 2.6, 7*0 \\
\hline Pair in Hercules & May-July & 1644.3 & +1327 & \(5 \cdot 4\) & 39 & \(5 \%, 10 \cdot 3\) \\
\hline 21 Ophiuchi . & June - Aug. & 1645.6 & + 125 & - 098 & 162 & \(6.0,8{ }^{\circ}\) \\
\hline 52 Herculis & May-Aug. & \(164^{\circ} \mathrm{O}\) & +46 II & \(1 \cdot 83\) & 309 & \(5{ }^{\circ} \mathrm{O}, 10^{\circ}\) \\
\hline P. xvi. 270 Oph. & June-Aug. & \(16{ }^{56 \cdot 5}\) & + 836 & \(1 \cdot 28\) & 157 & \(6 \% 79\) \\
\hline Herculis 206 (ro) & May-Aug. & 1659.8 & +1945 & I'78 & 232 & \(6 \%, 10 \cdot 2\) \\
\hline P. xvii. 18 Oph. & June-Aug. & \(17 \quad 7.5\) & + 754 & 147 & 204 & \(6 \%, 8.9\) \\
\hline P. xvii. 43 Oph. & July-Aug. & 1713.2 & \(-1738\) & 174 & 261 & \(6 \cdot 2,7 * 5\) \\
\hline 68 Herculis . & June-Aug. & \(17 \begin{array}{llll}13 & 13\end{array}\) & +33 14 & 4.4 & 61 & \(5^{\circ} \mathrm{I}, 1{ }^{10 \cdot 1}\) \\
\hline Pair in Hercules & June-Sept. & \(174^{\prime} \cdot 1\) & +1744 & - 79 & 298 & \(6 \cdot 1,78\) \\
\hline Pair in Taurus Pon.. & June-Sept. & \(1742 \cdot 2\) & +3922 & \(7 \cdot 6\) & 350 & \(6 \%, 103\) \\
\hline 90 Herculis & June-Sept. & 1749.6 & +40 3 & 190 & 122 & \(5 \%, \quad 94\) \\
\hline
\end{tabular}
(1) Binary.
(2) Binary, period 120 years.
(3) Large common proper motion.
(4) A pair in field, \(3 \mathrm{r}^{\circ} f ., 7 \frac{1}{2}, 7 \frac{3}{2}: 329^{\circ}: 0^{\prime \prime} \cdot 8 \mathrm{o}\).
(5) Large common proper motion.
(6) Magnitudes possibly variable.
(7) Binary, period 412 years.
(8) Binary, period rather uncertain.
(9) Binary, period \(34 \frac{1}{2}\) years.
(10) Pair in field, \(47^{8} p ., 5^{\prime} n .6{ }^{\circ} 9,11^{\circ} 3: 228^{7}: x^{\prime \prime} \cdot 50\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline Pair in Hercules & June-Oct. & \begin{tabular}{l}
h. m . \\
\(184{ }^{\circ} 2\)
\end{tabular} & +49 \(42^{\prime}\) & 2.12 & \(148^{\circ}\) & \(6.4,10 \cdot 5\) \\
\hline Herculis 417 & June-Sept. & \(185^{\circ} \mathrm{I}\) & +1627 & \(1 \cdot 19\) & 236 & \(6.7,7.8\) \\
\hline \(\mu\) Sagittarii (1) & June-Aug. & \(18 \quad 69\) & -21 5 & 16.8 & 258 & 3.5, 11.0 \\
\hline Pair in Scutum Sob. & June-Aug. & \(1815{ }^{\prime} 7\) & -15 9 & 12.4, 1. 27 & 220, 64 & \(7 \cdot 0,8 \cdot 2,8 \cdot 5\) \\
\hline 21 Sagittarii . & June-Aug. & 1818.6 & \(-2036\) & 21 & 293 & \(52,8.0\) \\
\hline Pair in Lyra & June-Nov. & \(18 \quad 32.4\) & +3322 & \(7 \cdot 3\) & 205 & 5.6, 10.5 \\
\hline Pair in Aquila & July-Oct. & \(1833^{\circ}\) & + 415 & 123 & 289 & \(6 \cdot 6,9.5\) \\
\hline Lyræ 9I. & June-Nov. & \(1850 \%\) & + 3349 & I \(\cdot 86,45 * 3\) & 134,350 & \(6 \cdot 0,10 \cdot 0,7 \cdot 3\) \\
\hline 17 Lyræ. & June-Nov. & \(19 \quad 3 \cdot 1\) & +3220 & 37 & 325 & \(5.5,97\) \\
\hline Pair in Lyra & June-Nov. & 19 I1.3 & +27 16 & 0.83 & \({ }^{1} 56\) & \(6.6,7.2\) \\
\hline Pair in Cygnus & June-Nov. & 19 12.3 & +49 \(5^{2}\) & \(2 \cdot 3\) & 76 & 6\%9, \(10 \cdot 4\) \\
\hline 2 Vulpeculæ & July-Nov. & 1912.9 & +22 49 & 1-86 & 125 & \(5 \% 76\) \\
\hline P. xix. 108 Drac. & Feb.-Nov. & \(1915 \%\) & +63 & \(1 \cdot 16\) & 337 & \(7 \%\) \% \(8 \cdot \mathrm{I}\) \\
\hline Pair in Cygnus & July-Dec. & \(1939^{\circ} \mathrm{O}\) & +40 27 & \(0 \cdot 85\) & 25 & \(6.5,7.9\) \\
\hline P. xix. 263 Cygni & July-Dec. & \(1939 \%\) & \(+3^{8} \quad 3\) & 0.96 & 196 & 7\%, 8\% \\
\hline \(\delta\) Cygni (2) & July-Dec. & 19 41 4 & +44 50 & 1.68 & 318 & 2.8, 7.5 \\
\hline \(\pi\) Aquilæ & July-Oct. & 1943.4 & +11 \(3^{2}\) & 143, 31:2 & 117, 306 & 6.1, 6\%, 11.0 \\
\hline 16 Vulpeculæ & July-Nov. & -19 57.2 & +2437 & 0.69 & 95 & 57,59 \\
\hline Cygni 153. & July-Dec. & \(20 \quad 903\) & +517 & \(4^{\circ} \mathrm{O}\) & 81 & 5\%, 10'9 \\
\hline Pair in Cygnus & July-Dec. & \(2010 \cdot 4\) & +41 45 & - 090 , 1 I \(\cdot 8\) & 172, 34 & \(7 \cdot 0,7 \cdot 6,9 \cdot 3\) \\
\hline \(\pi\) Capricorni & July-Sept. & \(2020 \cdot 8\) & -1835 & 3.3 & 145 & \(5 \cdot 1,8 \cdot 7\) \\
\hline Pair in Vulpecula & Aug.-Nov. & \(2027 \cdot 1\) & +25 24 & 1'16 & 78 & \(6 \cdot 3,7 \cdot 6\) \\
\hline Delphini 43 & Aug.-Nov. & 2039.5 & +1154 & 1 \(122,38.7\) & 92, 34 & \(6.4,8.0,12.0\) \\
\hline 13 Delphini . & Sept.-Nov. & 2042.2 & + 535 & 1.61 & 186 & \(5.2,89\) \\
\hline \(\lambda\) Cygni (3) & Aug.-Dec. & \(2043{ }^{\circ}\) & \(+364\) & \(0.65,85^{\circ}\) & 80, 105 & \(5 \cdot 0,7 \cdot 0,8 \cdot 7\) \\
\hline 60 Cygni. & Aug.-Dec. & \(2057{ }^{\circ} 2\) & +4542 & 27 & 165 & 5.5, 9.5 \\
\hline \(\gamma\) Equulei (4) & Aug. - Nov. & 2149 & \(+93^{8}\) & 2.2,413 & 275, 10 & \(4{ }^{\circ} 3,10 \%\), 12.0 \\
\hline P. xxi. 5I Cephei & June-Jan. & \(219^{\circ} 0\) & + \(593 \mathrm{3I}\) & \(1 \cdot 12\) & 226 & 5\%, 6.6 \\
\hline P. xxi. 50 Cygni & Aug.-Dec. & 2199 & +40 41 & \(1 \cdot 40\) & 128 & 6.6, 7'1 \\
\hline \({ }^{\text {T Cygni (5) }}\). & Aug. - Dec. & \(2110 \cdot 2\) & +3733 & I'10 & 116 & \(3.7,7.8\) \\
\hline Pair in Cepheus & June-Jan. & 2111.6 & \(+6359\) & \(0 \cdot 95\) & 248 & \(6 \cdot 6,6 \cdot 9\) \\
\hline P. xxi. 166 Cephei . & June-Jan. & 2124.3 & + 5916 & 12.2 & 190 & 6.2, 11.0 \\
\hline Pair in Cepheus & June-Jan. & 2152.6 & +64 47 & 45 & 246 & \(6 \cdot 0,8 \cdot 5\) \\
\hline Pair in Pegasus. & Sept.-Dec. & 2154.6 & +2324 & 2.9 & 259 & \(6 \cdot 6,11 \cdot 1\) \\
\hline 15 Cephei & June-Feb. & 220.6 & + 5916 & 10.9 & 297 & \(6.5,11 \cdot 0\) \\
\hline Pair in Pegasus. & Sept.-Dec. & 228.8 & \(+725\) & 120 & 126 & 6.0, 77 \\
\hline Pair in Cepheus & - & 22.29 .8 & +6920 & 0.84 & 265 & \(6.5,7 \%\) \\
\hline P. xxii. 258 Cephei . & - & \(224^{8} 0\) & +82 33 & 3.6 & 34 & \(5 \cdot 1,10 \cdot 3\) \\
\hline Pair in Lacerta. & Sept.-Dec. & 2248.6 & +44 9 & - \(33,26.4\) & 217, 354 & \(6 \cdot 0,8 \cdot 0,10 \% 7\) \\
\hline Pair in Pegasus. & Sept.-Dec. & \(2251{ }^{\circ}\) & + 1114 & 3.6 & 10 & \\
\hline
\end{tabular}
(1) A 9.5 at \(312^{\circ}: 48^{\prime \prime \prime} \cdot 3\), and another at \(115^{\circ}: 50^{\prime \prime} \cdot \mathrm{r}\), a \(12^{\circ} 5 \mathrm{mag}\). at \(118^{\circ}: 25^{\prime \prime} \cdot 2\), and an excessively faint star at \(180^{\circ} \pm 25^{\prime \prime}\); discovered by Mr . Common with 37 -in. reflector. Good test for large apertures.
(2) Binary, distance constant.
(3) Binary.
(4) \(4^{\circ} \cdot 3\) and \(10 \circ\) moving together through space.
(5) Binary.


\section*{SHOOTING STARS.}

Radiant Points.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date} & \multicolumn{2}{|l|}{Radiant Point} & \multirow{2}{*}{Notes} & \multicolumn{2}{|c|}{Radiant Point} \\
\hline & R.A. & Decl. & & Rises & Souths \\
\hline January 2-3 & \[
\begin{array}{r}
\text { h. m. } \\
\text { xv. } 3^{20}
\end{array}
\] & \(+4^{\circ}\) & Fine morning shower.* & - & 839 A.M. \\
\hline March 7 & XVI. 16 & +15 & Formerly active. & 951 P.M. & 513 A.M. \\
\hline April 19-20 & XVIII. I & \(+33\) & Lyrids. & 627 P.M. & 48 A.M. \\
\hline April 29-May 2. & XXI. 45 & \(-2\) & Morning shower. Max., May 2. & 1 I5 A.M. & 78 A.M. \\
\hline July 30-August 1 & II. 8 & \(+53\) & Fine display, 1878.* & - & 529 A.M. \\
\hline August 9-ro & II. \(5^{2}\) & \(+56\) & Perseids. Very fine annual shower. & \(\square\) & \(53^{8}\) A.M. \\
\hline September 1 & XX. 20 & \(+54\) & Large meteors. * [roth max. * & - & 936 P.M. \\
\hline October 17-20 & VI. 0 & + 15 & Fine annual shower. & 847 P.M. & 4 Io A.M. \\
\hline November \(13-14\) & X. 0 & \(+23\) & Magnificent shower in 1866. L.conids. & 10 14 P.M. & 627 A.M. \\
\hline November 19-23 & Iv. 16 & +20 & Long-continued shower. & 4 I9 P.M. & - 12 A.M. \\
\hline November 27 & I. 40 & \(+43\) & Andromedes. Fine display 1872-85.* & - & 9 I3 P.M. \\
\hline December 9-12 & VII. 0 & \(+32\) & Geminids. Rich shower. & 4 Io P.M. & I 41 A A. M. \\
\hline
\end{tabular}
* The radiant point of these showers is circumpolar, and never sets.

\section*{TEST OBJECTS.}

Two Inches Aperture.


Two and a Half Inches Aperture.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline Dividing Tests & & h. m. & & " & - & \\
\hline Tauri. Pon. 75 & June-Sept. & \(1839 \%\) & \(+522\) & 2.22 & 115.3 & \(6.2,6.6\) \\
\hline P. xx. 429. & June-Dec. & \(2054 \cdot 8\) & + 501 & 2.06 & 319 & \(6 \cdot 2,70\) \\
\hline P. 0.18 I & Aug. - Feb. & - \(41 \times\) & +50 50 & 2.05 & \(147 \%\) & \(7{ }^{\circ} 0,78\) \\
\hline Cephei 287 & - & \(2323 \cdot 1\) & +7329 & 2.03 & 32.6 & \(7{ }^{\circ} \mathrm{O}, 8^{\circ}\) \\
\hline 85 Lyncis & Jan. - Apr. & \(8 \quad 2.3\) & +3230 & 2.01 & \(47^{\circ} 6\) & \(7 \cdot 1,79\) \\
\hline Ursw Maj. 284. & Apr.-Aug. & 1132.4 & +64 59 & 107 & 322.7 & \(6 \%, 77\) \\
\hline 84 Aurigø & Dec.-May & \(630 \cdot 6\) & +41 41 & 1094 & 81. 1 & \(6 \cdot 9, \quad 77\) \\
\hline 之 2624 。 & June-Nov. & 1959.2 & +35 42 & 1.92, 42 '3 & 175.5, 327.5 & \(7{ }^{\circ} 0,7 \cdot 6,9 \cdot 5\) \\
\hline 0\% 358 & June-Sept. & 1830.8 & +1653 & 1-88 & 194 & \(6{ }^{5}, 68\) \\
\hline \(\tau\) Ophiuchi . & June-Aug. & 1756 & -8II & 184 & 254.5 & \(5^{\circ} \mathrm{O}, 6{ }^{\circ}\) \\
\hline \(\Sigma_{\text {FII6 }}\) & Dec.-Apr. & 728.1 & +1233 & 1.82 & \(109 \%\) & \(7{ }^{\circ} 0,77\) \\
\hline ₹ 1871 & Apr.-July & \(1437 \%\) & +5153 & 1.80 & 291.5 & \(7{ }^{\circ}, \quad 7{ }^{\circ} 3\) \\
\hline Defining Tests & & & & & & \\
\hline \(\mu\) Can. Maj. . & Dec.-Mar. & \(650 \%\) & -13 54 & \(2 \cdot 92\) & \(33^{8 \cdot 8}\) & \(5^{\circ} 2, \quad 8 \cdot 2\) \\
\hline 38 Lyncis & Feb.-June & 911.8 & +3718 & \(2 \cdot 80\) & 239.1 & \(4^{\circ} 2,6 \cdot 3\) \\
\hline - Draconis & - & 1948.6 & +69 59 & 2.94 & \(5 \cdot 5\) & \(4^{\circ} 2,7 \% 2\) \\
\hline * Leporis & Dec. - Mar. & \(58^{\circ} \circ\) & -13 5 & 2.41 & 357.4 & \(5^{\circ} 2,7 \%\) \\
\hline - Hydræ & Jan.-Apr. & \(840 \%\) & + 650 & 3.34 & \(228{ }^{\circ}\) & \(3 \cdot 8,7 \cdot 4\) \\
\hline - Leonis & Mar.-June & 11179 & +119 & 2.80 & \(63^{\circ} \mathrm{O}\) & \(4^{\circ} 6, \quad 7{ }^{\circ} 4\) \\
\hline \multicolumn{7}{|l|}{Space-penetrating Tests} \\
\hline - Persei & Nov.-Mar. & \(337 \cdot 1\) & +3155 & 20.0 & 238.4 & \(4.5,9.0\) \\
\hline 66 Eridani & Dec.-Mar. & 5 I'I & - 449 & 52.5 & 9.4 & \(6 \%, 9^{\circ}\). \\
\hline \(\beta\) Serpentis . & May-July & \(154{ }^{\circ} \mathrm{O}\) & +1547 & \(30 \cdot 7\) & \(265{ }^{\circ}\) & \(3^{\circ} 6, \quad 9{ }^{\text {I }}\) \\
\hline 33 Arietis & Oct.-Mar. & \(234^{\circ}\) & +26 35 & 28.6 & 359.6 & \(5^{\circ} 2, \quad 9 \cdot 3\) \\
\hline a Lyrm ( Vega) & June-Nov. & \(1833 \cdot 1\) & + \(3^{8} 4 \mathrm{I}\) & \(49^{\circ} 2\) & 155.5 & \(0 \cdot 2,9.5\) \\
\hline 12 Lacertm & July-Nov. & 2236.4 & +39 38 & \(70 \cdot 5\) & 15 \% & \(5 \% 79\) \\
\hline P. v. 37 & Nov.-Mar. & 512.4 & +20 & \(9{ }^{\circ}\) & \(203^{\circ} \mathrm{O}\) & \(6 \%, 98\) \\
\hline Cassiop. 63 & Aug.-Feb. & - \(32 \cdot 4\) & +4620 & \(10 \cdot 4\) & \(85^{\circ} 9\) & \(6 \cdot 8, \quad 9{ }^{\circ} 9\) \\
\hline \(\theta\) Virginis & Apr.-June & \(134^{\circ} \mathrm{O}\) & \(-456\) & 7'1, 70.9 & \(344 \cdot 6,297 \times\) I & 4.9, 8.5, 10.0 \\
\hline 18 Librø & May-July & \(145^{2} 7\) & -10 41 & 19.5 & 38.9 & \(6.0,10 \%\) \\
\hline P. xix. 144 & July-Oct. & \(1924{ }^{\circ}\) & + 239 & \(34 \%\) & 5.2 & \(6.0,100\) \\
\hline \(\mu\) Herculis & May-Sept. & \(1742{ }^{\circ}\) & +27 47 & \(3{ }^{1} 2\) & 243.9 & \(3.5,10 \%\) \\
\hline
\end{tabular}

Three Inches Aperture.


Three and a half Inches Aperture.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline \begin{tabular}{l}
Dividing Tests \\
\(\Sigma 1884\) \\
36 Androm. \\
42 Ceti . \\
\(\pi\) Aquilø \\
\(\iota^{2}\) Cancri \\
OE 261 \\
P. xxi. 50 \\
- Arietis \\
Pegasi 20. \\
P. vii. 170 \\
ェ 1037 \\
P. xvi. 270
\end{tabular} & \begin{tabular}{l}
May-July \\
Sept.-Feb. \\
Dec.-Feb. \\
July-Oct. \\
Dec.-May \\
Apr.-July \\
Aug.-Dec. \\
Dec.-Mar. \\
July-Oct. \\
Jan.-Mar. \\
Jan.-Apr. \\
June-Aug.
\end{tabular} &  & \[
\begin{array}{ll}
+24 & 50 \\
+23 & I \\
-1 & 6 \\
+11 & 3^{2} \\
+3 I & I \\
+32 & 4 I \\
+40 & 4 I \\
+20 & 54 \\
+10 & 35 \\
+5 & 30 \\
+27 & 25 \\
+8 & 36
\end{array}
\] &  & \(\circ\)
\(55^{\circ}\)
1.5
\(355^{\circ}\)
117.3 .306 .0
328.5
348.2
127.7
201.3
306.4
\(141^{\circ} 5\)
310.6
157.0 & \begin{tabular}{cc}
63, & \(7 \cdot 4\) \\
\(6 \cdot 0\), & \(6 \cdot 4\) \\
\(6 \%\) & 7.5 \\
\(6 \cdot 1\), & \(6 \cdot 7,11 \cdot 0\) \\
\(5 \cdot 8\), & \(6 \cdot 2\) \\
\(6 \cdot 3\), & \(6 \cdot 9\) \\
\(6 \cdot 6\), & \(7 \cdot 1\) \\
\(5 \cdot 4\), & \(6 \cdot 3\) \\
\(6 \cdot 6\), & \(6 \cdot 6\) \\
\(7 \cdot 0\), & \(7 \cdot 3\) \\
\(6 \cdot 9\), & \(7 \cdot 1\) \\
6.7, & \(7 \cdot 9\)
\end{tabular} \\
\hline \begin{tabular}{l}
Defining Tests \\
6 Cassiop. \\
33 Pegasi \\
c Cassiop. \\
\(\phi\) Virginis \\
P. xi. 126 \\
\({ }_{17}\) Lyræ.
\end{tabular} & \[
\begin{aligned}
& \text { Aug.-Feb. } \\
& \text { July-Dec. } \\
& \text { July-Mar. } \\
& \text { May-July } \\
& \text { Mar.-June } \\
& \text { June-Nov. }
\end{aligned}
\] & \begin{tabular}{l}
\(2343^{\circ} 2\) \(2218: 2\) \\
\(219{ }^{\circ} 7\) \\
1422.3 II 32.6 I9 \(3^{\circ} 1\)
\end{tabular} & \[
\begin{array}{lll}
+6 & 35 \\
+20 & 17 \\
+66 & 53 \\
- & 1 & 43 \\
- & 1 & 4^{8} \\
+32 & 20
\end{array}
\] & \[
\begin{gathered}
1 \cdot 60 \\
2 \cdot 06,63 \cdot 6 \\
1 \cdot 98,7 \cdot 4 \\
4.09 \\
4.92 \\
3 \cdot 68
\end{gathered}
\] & \[
\begin{gathered}
195 \cdot 6 \\
179.9,328 \cdot 6 \\
262 \cdot 0,108 \cdot 5 \\
112 \cdot 6 \\
279 \cdot 5 \\
321 \cdot 6
\end{gathered}
\] & \[
\begin{array}{cc}
5 \cdot x, & 7 \cdot 6 \\
6 \cdot 1,8 \cdot 7,8 \cdot 3 \\
5^{\circ} 0, & 7 \cdot 5,8 \cdot 1 \\
5^{\circ}, & 9^{\circ} 4 \\
6^{\circ} \cdot 2, & 9^{\circ} 7 \\
5^{\circ} 5, & 9^{\circ} 7
\end{array}
\] \\
\hline \begin{tabular}{l}
Space-penetrating Tests \\
- Leporis \\
P. xx. ir6 \\
\(\theta\) Cancri \\
\(v\) Cygni \\
a Androm. \\
\({ }_{13}\) Lacertø \\
5 Lyncis \\
\(\gamma\) Persei \\
49 Piscium \\
\(\pi\) Geminorum \\
56 Herculis \\
44 Virginis
\end{tabular} & \begin{tabular}{l}
Dec.-Mar. \\
July-Oct. \\
Jan.-Apr. \\
June-Nov. \\
Sept.-Feb. \\
July-Nov. \\
Dec.-May \\
Aug.-Feb. \\
Sept.—Feb. \\
Jan. -Apr. \\
May-Aug. \\
Apr. -June
\end{tabular} & \begin{tabular}{l}
\(5 \quad 7 \circ\)
\(20 \quad 18.8\) \\
\(825^{\circ}\) \\
\(2113^{\circ} 2\) \\
\(2239^{\circ} 0\) \\
616.9 \\
256.5 \\
- \(24^{\circ} 9\) \\
\(740^{\circ} \mathrm{I}\) \\
1650 . 3 \\
1253 •8
\end{tabular} & \(\begin{array}{ll}-12 & 0 \\ +0 & 42 \\ +18 & 29 \\ +34 & 25 \\ +28 & 28 \\ +41 & 13 \\ +5 & 29 \\ +53 & 3 \\ +15 & 24 \\ +33 & 42 \\ +25 & 55 \\ -3 & 12\end{array}\) &  &  &  \\
\hline
\end{tabular}

\section*{Four Inches Aperture.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Pcsit. Angles & Magnitude \\
\hline Dividing Tests & & h. m. & & " & - & \\
\hline P. vii. \(5^{2}\) & Dec.-Apr. & 7 II 5 & \(+930\) & 128 & 1135 & \(7^{\circ} \mathrm{o}, 7{ }^{\circ}\) \\
\hline \(\xi\) Scorp. & May-July & 15 58.1 & -II 4 & 1.27, 7 \% 3 & 195\% \({ }^{\circ}\),6\% & \(5{ }^{\circ} \mathrm{C}, 54.4{ }^{\circ} 2\) \\
\hline ェ 2049 & May-Aug. & \(16 \quad 23.3\) & +26 15 & 1.26 & 2109 & \(6 \cdot 6,7 \%\) \\
\hline Cor. Bor. I & May-July & \(15 \quad 13.5\) & +27 15 & \(1 \times 22\) & \(308 \cdot 1\) & \(5 \cdot 6,6 \cdot 1\) \\
\hline \ 1606 & Mar.-June & \(125^{\circ} 0\) & +40 \(3^{2}\) & \(1 \times 21\) & \(33^{8 \cdot 1}\) & \(6.2,7 \%\) \\
\hline OX 182 & Dec.-Apr. & 746.7 & \(+341\) & 1.20 & \(43^{\circ} 2\) & \(7{ }^{\circ} 0,7{ }^{\circ}\) \\
\hline Pegasi 148 & Sept.-Dec. & 2288 & \(+725\) & \(1 \times 20\) & 125.6 & \(6 \cdot 0,77\) \\
\hline Herculis 417 & June-Sept. & \(18 \quad 51\) & +1627 & 119 & 2360 & \(6 \%, 78\) \\
\hline Draconis 99 & May-Oct. & \(16 \quad 22 \cdot 3\) & +61 57 & 1-16 & \(2 \%\) & \(6 \cdot 2,74\) \\
\hline 14 Orionis & Dec.-Mar. & 5 1.6 & + 820 & I'15 & 203.3 & \(5 \cdot 8,60\) \\
\hline Tauri Pon. 9 & June-Aug. & \(175{ }^{\circ} \mathrm{C}\) & +o5 & 1'12 & 274.5 & \(6 \%, 7 \%\) \\
\hline P. xxi. 51 . & June-Jan. & 2190 & + \(593 \mathrm{3I}\) & 1'12 & 226.3 & \(5.9,6.6\) \\
\hline Defining Tests & & & & & & \\
\hline \(\pi\) Arietis & Dec.-Mar. & \(242^{\circ} 9\) & \(+17 \quad 0\) & 3'29, \(25^{\circ} 2\) & 122 \({ }^{\circ}\), 109*9 & 5.5, 8.2, 11 \% \\
\hline \(\zeta\) Herculis . & May-Aug. & \(1637^{\circ}\) & +3I 49 & \(1 \cdot 65\) & \(82^{\circ}\) & \(2.6,7{ }^{\circ}\) \\
\hline \(\delta\) Cygni & July-Dec. & 19414 & +44 50 & I 68 & 318.5 & 2.8, \(7 \cdot 5\) \\
\hline \(\psi^{2}\) Orionis & Dec.-Mar. & 5 20.8 & + 259 & \(2 \cdot 66\) & 324.4 & 5.4, 9\% \\
\hline 5 Aurigæ & Oct.-Apr. & 452.4 & +39 13 & \(2 \cdot 75\) & \(246 \cdot 8\) & \(6 \cdot 0,97\) \\
\hline \(\eta\) Draconis . & Apr.-Aug. & 1622.4 & +61 46 & \(5 \cdot 26\) & 142 '1 & \(2.8,9{ }^{\circ}\) \\
\hline \multicolumn{7}{|l|}{Space-penetrating Tests} \\
\hline \(\nu^{1}\) Cor. Bor. & May-Aug. & 1618.2 & +33 58 & 66.4 & \(236 \cdot 6\) & 5•1, \(10 \cdot 5\) \\
\hline 5 Ursæ Min. & & 1427.8 & +76 12 & 56.4 & 129.4 & \(4^{\circ} 8,10 \cdot 5\) \\
\hline 3 Leonis & Jant-June & 922.4 & + 84 r & \(25^{\circ} \mathrm{I}\) & \(79^{\circ}\) & \(6 \%\), 10.8 \\
\hline - Ursæ Maj. & Jan.-June & 8514 & +48 29 & 9.6 & 3567 & \(3.2,10{ }^{2}\) \\
\hline 41 Arietis & Dec.-Mar. & 2434 & +2648 & 21 \({ }^{\circ} 2,34^{\circ}\) & 265.8,203.5 & \(4.1,11 \cdot 3,110\) \\
\hline 2 Lacertm & Aug.-Dec. & 2216.4 & +45 58 & \(48 \cdot 2\) & 97 & \(5^{\circ} \mathrm{O}, 10{ }^{\circ} 9\) \\
\hline P. i. 145 . & Oct.-Feb. & 1 349 & +25 10 & \(10 \times 9\) & \(33 \cdot 3\) & 6.1, 10.9 \\
\hline 42 Piscium & Dec.-Feb. & - 16.5 & +1251 & 29.7 & \(33^{8 \cdot 1}\) & \(6 \cdot 6\), 11 O \\
\hline 54 Ophiuchi . & June-Aug. & \(17{ }^{29} 1\) & +1315 & 21.6 & \(74^{\prime 7}\) & \(6 \cdot 0,110\) \\
\hline \(\kappa\) Andromedæ & Aug. - Feb. & 2334.8 & +4342 & \(46 \cdot 6,103.2\) & 188\%7,294.6 & 4\%, 110, 110 \\
\hline \(\gamma\) Libræ & May-July & \(15{ }^{29} 1\) & \(-1425\) & \(41 \cdot 3\) & 1518 & \(4.5,113\) \\
\hline Lyncis 51. & Dec.-Apr. & \(720 \cdot 5\) & +4826 & 16.9 & 94.3 & \(6.2,11 \cdot 2\) \\
\hline
\end{tabular}

Five Inches Aperture.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R.A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline Dividing Tests & & h. m. & - & " & - & \\
\hline Vulpec. 94 & Aug. - Nov. & \(2027 \cdot 1\) & +25 24 & \(1 \cdot 16\) & \(78 \cdot 1\) & \(6 \cdot 3,7 \cdot 6\) \\
\hline \(\Sigma 115\) & Aug.-Feb. & \(1{ }^{1} 6^{\circ} 1\) & +5733 & 1.06 & 149.8 & \(7{ }^{\circ} 0,7{ }^{\circ}\) \\
\hline ミ. 749 & Nov.-Mar. & \(530 \cdot 1\) & +26 \(5^{2}\) & 1.06 & 177.6 & \(6.5,7.0\) \\
\hline \({ }_{7}\) Orionis & Dec.-Mar. & 518.7 & \(-230\) & \(1 \times 0\) & 84.6 & \(4 \%, 60\) \\
\hline 02: \(3^{13}\) & May-Sept. & \(1628 \%\) & +40 21 & -'99 & 151.6 & \(7.0,76\) \\
\hline 21 Oph . & June-Aug. & \(1645 \cdot 6\) & +125 & - 98 & 162.7 & \(6 \%, 8.0\) \\
\hline O2. 50 & Aug.-Apr. & \(\begin{array}{lll}3 & 1\end{array}\) & +71 7 & - 98 & 213.4 & \(7{ }^{\circ} 0,7{ }^{\circ}\) \\
\hline e Equulei & July-Nov. & 2053.4 & + 351 & -097, 10.5 & 285.6, \(72 \cdot 9\) & 6.1, 6.8, 7.4 \\
\hline P. xix. 263 & July-Dec. & 1939.8 & \(+392\) & 0.96 & 196.2 & \(7{ }^{\circ} \mathrm{O}, 80\) \\
\hline 48 Cephei & - & \(350 \%\) & +80 23 & -'96 & \(35^{\circ}\) & \(5^{\circ} 7,7{ }^{\circ}\) \\
\hline 4 Lyncis & Nov.-May & 6119 & +59 25 & - '95 & \(101 \%\) & \(6 \cdot 2,7.5\) \\
\hline A.C. 12 & July-Oct. & 1952.4 & - 234 & \(0 \cdot 93\) & \(33^{\circ} 4\) & \(7{ }^{\circ} 0,8{ }^{\circ}\) \\
\hline Defining Tests & & & & & & \\
\hline \(\omega^{2}\) Aquarii & Oct.-Dec. & \(2336 \cdot 8\) & -15 10 & 5.68 & 87.8 & \(5{ }^{\circ} \mathrm{O}, 11.0\) \\
\hline 42 Orionis & Dec.-Mar. & 529.8 & - 455 & 173 & 2177 & \(5.5,9.2\) \\
\hline 13 Delphini & Sept.-Nov. & 2042.2 & + 535 & \(1 \cdot 61\) & 186.4 & \(5^{\circ} 2,8.9\) \\
\hline 60 Cygni & Aug.-Dec. & \(2057 \cdot 2\) & +4542 & 271 & 165.1 & \(5.5,9.5\) \\
\hline 68 Herculis & June-Aug. & \(17{ }^{13} 3^{1}\) & +33 14 & 4.41 & 61.8 & \(5^{\circ} 1,10\) \\
\hline \(\psi\) Cassiop. & Aug.-Feb. & 1 \(17 \%\) & \(+67{ }^{2}\) & \(28.7,3^{\circ} 08\) & 106.8, \(256 \%\) & \(4.5,9 \% 7,10 \cdot 6\) \\
\hline \multicolumn{7}{|l|}{Space-penetrating Tests} \\
\hline 14 Aurigø & Nov.-Mar. & \(5 \quad 8.0\) & +3233 & 11.9, 14.7 & \(34^{8 \cdot 1}, 225^{\circ} 4\) & 5.1, 11.0, \(7 \cdot 5\) \\
\hline 14 Monoc. & Dec.-Apr. & \(628 \cdot 6\) & + 740 & \(10 \cdot 5\) & 208.6 & 6\%, 10.9 \\
\hline 40 Cassiop. & - & 129.4 & +72 27 & 53.3 。 & \(237^{\circ}\) & 6.0, 10'9 \\
\hline 74 Oph. . & June-Aug. & \(1815 \%\) & + 319 & 27.9 & 285.6 & \(5{ }^{\circ} \mathrm{O}, 108\) \\
\hline P. xxii. \(3^{6}\). & Aug.-Dec. & 22 9\% & +39 9 & \(27^{2}\) & 178.5 & 6\%, 110 \\
\hline 12 Ceti & c.-Feb. & - 24.2 & -435 & 8.6, \(212 \cdot 4\) & 187\%, \(110 \cdot 3\) & 6.2, 10\%9, \(10 \%\) \\
\hline 20 Pegasi & Aug. -Nov. & \(2155^{\circ} 5\) & +1234 & \(5^{1}\) ' & 325.5 & 5.5, 1144 \\
\hline 55 Androm. & Aug. -Feb. & I \(46 \cdot 3\) & +40 10 & 60.I & \(355^{\circ}\) & 5.5, 11.5 \\
\hline 54 Sagittarii & July-Sept. & 19 34.2 & \(-1632\) & 35'8, \(45 \cdot 6\) & \(2415.51{ }^{1} 7\) & 5.5,11.5, 9*0 \\
\hline 96 Aquarii & Oct.-Dec. & 2313.5 & - 545 & \(9{ }^{\circ} 9\) & 23.5 & \(6 \cdot 2,113\) \\
\hline 85 Virginis & Apr.-June & 13394 & -15 12 & \(43 \cdot 3\) & \(3{ }^{118}\) & \(6 \cdot 0,117\) \\
\hline 56 Aquilæ & Aug.-Oct. & 1947 '9 & \(-85^{2}\) & \(46 \cdot 7\) & 77.8 & \(57,11.8\) \\
\hline
\end{tabular}

Six Inches Aperture．
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R．A． & Decl． & Distances & Posit．Angles & Magnitude \\
\hline \begin{tabular}{l}
Dividing Tests \\
Canis Maj． 89
\end{tabular} & \begin{tabular}{l}
Feb．－April \\
Oct．－Feb． \\
Nov．－Mar． \\
－ \\
Feb．－June \\
Nov．－Mar． \\
July－Dec． \\
April－July \\
June－Sept． \\
May－Sept． \\
July－Sept．
\end{tabular} &  & \[
\left|\begin{array}{ll}
-15 & 1 \\
+19 & 38 \\
+31 & 12 \\
+69 & 20 \\
+41 & 42 \\
+20 & 50 \\
+40 & 27 \\
+6 & 26 \\
+71 & 54 \\
+17 & 44 \\
+37 & 47 \\
-19 & 52
\end{array}\right|
\] & \(" 1\)
0.97
0.88
0.87
0.84
0.84
0.85 .75 .6
0.85
0.82
0.80
0.79
108.4 .0 .78
0.79 &  & \begin{tabular}{cc}
6.0, & 8.7 \\
6.5, & 7.2 \\
5.5, & 6.5 \\
6.5, & 7.0 \\
6.5, & 7.5 \\
\(6.2,8 \circ\) & 7.5 \\
6.5, & \(7 \circ 9\) \\
\(7 \circ\) & \(7 \circ 0\) \\
\(7 \circ 0\), & 7.5 \\
6.1, & 7.8 \\
4.5, & 6.5, \\
6.8 \\
6. & 7.2
\end{tabular} \\
\hline \begin{tabular}{l}
Defining Tests \\
Cygni 153 \\
\(\theta\) Aurigø \\
＊Leonis \\
\(\pi\) Cephei \\
6 Serpentis \\
Cancri 5
\end{tabular} & \begin{tabular}{l}
July－Dec． \\
Nov．－Mar． \\
Feb．－June \\
－ \\
May－July \\
Dec．－April
\end{tabular} &  &  & \[
\begin{gathered}
4.03 \\
2 \cdot 37 \\
3 \cdot 36,10 \\
1 \cdot 31 \\
2 \cdot 28 \\
2 \cdot 70
\end{gathered}
\] & \[
\begin{gathered}
8 \mathrm{r} \cdot 2 \\
35^{\circ} \cdot 5 \\
205^{\circ} \mathrm{I}, 65 \\
27.3 \\
13^{\circ} \cdot 2 \\
33^{2} .5
\end{gathered}
\] & \[
\begin{array}{cc}
5^{\circ} 9, & 10.9 \\
3^{\circ} 0, & 8.6 \\
5^{\circ}, 10^{\circ} 2, & 11.5 \\
47, & 8.7 \\
4.7, & 9^{\circ} 4 \\
6.1, & 10.7
\end{array}
\] \\
\hline \begin{tabular}{l}
Space－penetrating Tests \\
c Ceti \\
I Aquarii \\
\({ }^{1} 5\) Tauri． \\
Pegasi 129. \\
72 Virginis \\
8 Cancri \\
41 Sextantis \\
\(\rho\) Boठtis \\
\(a^{2}\) Capricorni \\
－Cassiop． \\
－Aurigæ \\
ro Herculis
\end{tabular} & \begin{tabular}{l}
Dec．－Feb． \\
July－Oct． \\
Dec．－April \\
Aug．－Nov． \\
April－June \\
Jan．－April \\
April－June \\
May－July \\
Aug．－Oct． \\
Aug．－Feb． \\
Nov．－April \\
June－Sept．
\end{tabular} & \begin{tabular}{l}
013.6
\(20 \quad 33.6\) \\
\(520 \cdot 5\) 224.8 \\
\(1324^{\circ} 5\) \\
\(83^{8.2}\) \\
10 \(44^{\circ} 6\) \\
1426.9 \\
20117 \\
－ \(3^{8} 3\) \\
\(54^{1} 3\) \\
18 \(40 \cdot 8\)
\end{tabular} & \[
\left\lvert\, \begin{array}{lcc}
- & 9 & 28 \\
+ & 0 & 6 \\
+17 & 52 \\
+14 & 4 \\
- & 5 & 53 \\
+18 & 37 \\
- & 8 & 18 \\
+30 & 52 \\
-12 & 54 \\
+47 & 40 \\
+39 & 8 \\
+20 & 26
\end{array}\right.
\] &  & \begin{tabular}{c}
\(15^{\circ} 5\) \\
\(217.4,38.9\) \\
308.4 \\
\(253^{\circ} 4\) \\
16.1 \\
\(113^{\circ} .2\) \\
\(303^{\circ} 8\) \\
\(334^{\circ} \circ\) \\
147.9 \\
\(303^{\circ} 9\) \\
\(350^{\circ} 0,32^{\circ} 9\) \\
\(95^{\circ}\), \\
\hline
\end{tabular} & \begin{tabular}{l}
\(4^{\circ}\) o， \(11 \cdot 5\) 5．5，II＇5，II＇3 \\
\(6.0,114\) \\
6 0，II． 8 \\
6．2， 11 8 \\
\(5^{\circ}\) o， \(11 \cdot 8\) \\
\(6 \%\) ， 11.8 \\
3．6， 11 • 7 \\
3．5，11．5 \\
\(5^{\circ} \mathrm{o}, 12{ }^{\circ}\) \\
\(5^{\circ}\) o， \(12^{\circ} 0,11^{\circ} \circ\) \\
\(5^{\circ} 0,12^{\circ} 0,1 r^{\circ} \circ\)
\end{tabular} \\
\hline
\end{tabular}

Seven Inches Aperture.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name of Object & Visible & R. A. & Decl. & Distances & Posit. Angles & Magnitude \\
\hline \begin{tabular}{l}
Dividing Tests \\
73 Ophiuchi . \\
54 Aurige \\
ox: 338 \\
Hydre 348 \\
Cygni 226 . \\
16 Vulpeculæ \\
Dawes 6 \\
ox: 156 \\
\(\eta\) Coronæ \\
\(\lambda\) Cygni \\
B.A.C. 8277 \\
P. xviii. 132
\end{tabular} & \begin{tabular}{l}
June-Aug. \\
Jan.-Apr. \\
June-Sept. \\
Apr. - June \\
July-Dec. \\
July-Nov. \\
Dec.-Mar. \\
Dec.-Apr. \\
May-Aug. \\
Aug.-Dec. \\
July-Mar. \\
June-Sept.
\end{tabular} & \begin{tabular}{l}
\(\begin{array}{ll}\text { h. } & \mathrm{m} . \\ \mathrm{I} 8 & 3.9\end{array}\) \\
\(632 \cdot 4\) \\
1746 8 \\
\(1257^{\circ} 6\) \\
\(2035^{\circ} 4\) \\
\(1957^{\circ} 2\) \\
\(523^{\circ} 3\) \\
\(640 \%\) \\
1518.5 \\
\(2043^{\circ} 0\) \\
\(2343^{\circ} 2\) \\
18 30 •8
\end{tabular} & \[
\begin{array}{lll}
+ & 3 & 58 \\
+28 & 22 \\
+15 & 21 \\
-19 & 58 \\
+40 & 10 \\
+24 & 37 \\
- & 3 & 24 \\
+18 & 19 \\
+30 & 42 \\
+36 & 4 \\
+64 & 15 \\
+23 & 31
\end{array}
\] & ```
    0.83
    0.83
    0.72
    0.71
0%70,69%0
    0.69
    0.69
    0.68
    0.65
    0.65
0%58,48.9
    0.56
``` & \[
\begin{gathered}
\circ \\
249^{\circ} 5 \\
36^{\circ} 9 \\
25^{\circ} 0 \\
133^{\prime} 4 \\
23^{\circ} 7,69^{\circ} 8 \\
94^{\circ} 5 \\
84^{\prime} 4 \\
3^{17} 7^{\circ} 1 \\
182^{\circ} 2 \\
80^{\circ} 3 \\
253^{\circ} 8,353^{\circ} 4 \\
35^{\circ} 1
\end{gathered}
\] & \begin{tabular}{l}
\(6 \%, 76\) \\
6 \%, 8.0 \\
\(6.2,6.4\) \\
\(6.2,6.2\) \\
\(6.4,6 \cdot 6,76\) \\
\(5 \%, \quad 5 \%\) \\
\(7 \cdot 1, \quad 7 \cdot 4\) \\
\(6.6,6 \cdot 6\) \\
\(57,6 \%\) \\
\(5^{\circ} \mathrm{O}, \quad 7^{\circ} 0\) \\
\(6.5,7 \%, 8.5\) \\
\(6 \cdot 3,6 \cdot 6\)
\end{tabular} \\
\hline \begin{tabular}{l}
Defining Tests \\
44 Cygni \\
58 Ceti . \\
Lyræ 91 \\
\(\tau\) Cygni \\
46 Virginis \\
46 Eridani
\end{tabular} & \begin{tabular}{l}
July-Dec. \\
Nov.-Feb. \\
June-Nov. \\
Aug. - Dec. \\
Apr.-June \\
Dec.-Mar.
\end{tabular} & \begin{tabular}{l}
2026.7 \\
1 \(52^{\circ} 2\) \\
\(1850 \%\) \\
21 10'2 \\
\(1254 \%\) \\
428.4
\end{tabular} & \[
\begin{array}{lll}
+3 & 33 \\
- & 2 & 37 \\
+33 & 49 \\
+37 & 33 \\
- & 2 & 45 \\
- & 6 & 59
\end{array}
\] & \[
\begin{gathered}
2.26 \\
2^{\circ} 73 \\
1 \cdot 86,45 \cdot 3 \\
1 \cdot 10 \\
1 \cdot 44 \\
1.47
\end{gathered}
\] & \[
\begin{gathered}
157.9 \\
12.8 \\
133.9,350.6 \\
116.3 \\
151^{\circ} 5 \\
57.0
\end{gathered}
\] & \[
\begin{gathered}
6.3,11 \circ 0 \\
6.3,11.5 \\
6.0,10 \circ, 7.3 \\
3.7, \\
3^{\circ} \cdot 8 \\
5.4, \\
6.5 \\
6.0, \\
\hline 0.0
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Space-penetrating Tests \\
\(\beta\) Aquarii \\
\(\tau\) Boötis \\
94 Ceti \\
\(\kappa\) Delphini \\
\(a^{2}\) Cancri \\
f Aquilæ \\
B.A.C. \({ }^{1173}\) \\
\(x\) Delphini \\
\(\xi\) Pegasi \\
30 Pegasi \\
53 Virginis \\
30 Geminorum
\end{tabular} & \begin{tabular}{l}
Sept.-Nov. \\
Apr.-June \\
Dec.-Feb. \\
July-Nov. \\
Jan.-Apr. \\
July-Oct. \\
July-Nov. \\
Aug.-Nov. \\
Aug.-Nov. \\
Apr.-June \\
Dec.-Apr.
\end{tabular} & \[
\begin{array}{rr}
21 & 25 \cdot 6 \\
13 & 41 \cdot 8 \\
3 & 6.9 \\
20 & 33 \cdot 6 \\
8 & 52 \cdot 3 \\
19 & 49.7 \\
23 & 21.4 \\
20 & 50.2 \\
22 & 41 \cdot 0 \\
22 & 14.7 \\
13 & 6 \cdot 0 \\
6 & 37
\end{array}
\] & & \[
\begin{gathered}
34.3,54.5 \\
8 \cdot 9 \\
5 \cdot 7 \\
12 \cdot 5 \\
11 \cdot 1 \\
12 \cdot 5 \\
20 \cdot 1 \\
40 \cdot 0 \\
11 \cdot 9,127.3 \\
6 \cdot 3,10 \cdot 1 \\
70 \cdot 9 \\
28 \cdot 0
\end{gathered}
\] & \[
\begin{gathered}
3 \mathbf{I 8} \cdot 9,184^{\circ} 9 \\
35^{\circ} 0 \\
250 \cdot 9 \\
319 \circ 0 \\
325 \circ \\
17.7 \\
312 \cdot 3 \\
21 \cdot 8 \\
112 \cdot 6,21 \cdot 8 \\
20 \cdot 7,222 \cdot 8 \\
9 \cdot 6 \\
184^{\circ} .1
\end{gathered}
\] & \\
\hline
\end{tabular}

\section*{SELENOGRAPHICAL LONGITUDES AND LATITUDES OF LUNAR CRATERS.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name of Crater & \begin{tabular}{l}
Longitude \\
\(+=\) West \\
-=East
\end{tabular} & Latitude
\[
\begin{aligned}
& \mathrm{N}=\text { North } \\
& \mathrm{S}=\text { South }
\end{aligned}
\] & ame of Cras & \begin{tabular}{l}
Longitude \\
\(t=\) West \\
- = East
\end{tabular} & \begin{tabular}{l}
Latitude \\
\(\mathbf{N}=\) North \\
\(\mathrm{S}=\) South
\end{tabular} \\
\hline Agrippa (102) & +10 22 & N 44 & Hesiodus (B) [187] iii. & 7 - & S \(26^{\circ}\) 50' \\
\hline Airy (291) iv. & + 554 & S 1746 & Hyginus (93) i. & +622 & N 81 \\
\hline Albategnius (289) & + 358 & S II 21 & Kepler (144) ii. & -37 40 & \(\mathrm{N} 7{ }^{1}\) \\
\hline Alpetragius (205) iii. & -445 & S 15 & La Hire (123) ii. & -25 10 & \(\begin{array}{lll}\mathrm{N} 27 & 18\end{array}\) \\
\hline Alphonsus (207) & 314 & S 1259 & Lalande (210) iii. & 846 & S 427 \\
\hline Archimedes (A) [120] & - 7 & N 2745 & Landsberg (222) iii. & -26 20 & S 0 \\
\hline Archytas (46) i. . & + 413 & N 5824 & Langrenus (338) iv. & +60 30 & S 8 \\
\hline Argelander (467) iv. & +41 43 & S 4546 & Laplace (A) [34] ii. & -26 34 & N 4316 \\
\hline Aristarchus (148) ii. & -47 10 & N 23 \(3^{2}\) & Le^Monnier (A) [53] i. & +29 8 & N 26 \\
\hline Aristillus (83) i. & + 11 & N 3345 & Lichtenberg (151) ii. & \(-67\) & \(\mathrm{N}_{31}{ }^{25}\) \\
\hline Beer (446) iv. & +34 33 & S 1748 & Lindenau (370) & +24 30 & S 3152 \\
\hline Bessarion (145) & -37 & N \(14{ }^{52}\) & Linné (74) i & + II 33 & \(\begin{array}{ll}\mathrm{N} 27 & 48\end{array}\) \\
\hline Bessel (73) i. & +1722 & \(\begin{array}{ll}\mathrm{N} 21 & 54\end{array}\) & Mädler (466) iv. & +29 & S 1056 \\
\hline Billy (266) iii. & -49 58 & S 14 & Manilius (95) i. & + 847 & N 1427 \\
\hline Bode (107) ii. & 39 & N 637 & Marius (147) ii. & -50 6 & NII 50 \\
\hline Brayley (479) ii. & -36 52 & \(20 \quad 54\) & Maskelyne (67) i. & +29 40 & 32 \\
\hline Bullialdus (213) & 22 & S 2030 & Menelaus (70) i. & + 1531 & N 16 \\
\hline Burg (50) i. & \(+27 \quad 32\) & N 4457 & Messier (327) iv. & +47 12 & 157 \\
\hline Calippus (76) & +10 29 & \begin{tabular}{l}
N 3846 \\
S \\
\hline
\end{tabular} & Milichius (1ı8) ii. & -29 & N 10 o \\
\hline Campanus (226) & \(-27 \quad 27\) & S 2737 & Moretus (262) & \(-79\) & S 6945 \\
\hline Capella (324) & +34 48 & S S & Mos & 54 & S \\
\hline Capuanus (238) & -25 42 & S 3420 & Murchison (A) [483] & & N 4 \\
\hline Carlini (128) ii. & -24 & N 3330 & Mutus (400) iv. & +2 & S 63 \\
\hline Cassini (A) [8r] i. & 4 & & Neander (373) & +39 & 3 I 10 \\
\hline Censorinus (325) iv. & 3222 & S 0 & Olb & -77 33 & N 755 \\
\hline Cepheus (3) \({ }^{\text {i }}\). & 4540 & N40 59 & P & 47 & S 2450 \\
\hline Cleomedes (12) i & +54 47 & N 26 & Picard (4) i. & +53 \(5^{2}\) & \(\begin{array}{ll}\text { N } 14 & 28\end{array}\) \\
\hline Conon (88) i. & + 157 & \(\mathrm{N}^{21} 31\) & Piccolomini (371) iv. & +3x 45 & S 29 \\
\hline Copernicus (II2) ii. & 20 & N 921 & Pico (13I) ii. & -9 12 & N \(45 \quad 28\) \\
\hline Crüger (278) iii. & 66 & S 1648 & Plinius (6x) & +23 23 & N 15 \\
\hline Delambre (301) & 1729 & S 2 & Posidonius (A) & +29 & \(\mathrm{N}_{31} 33\) \\
\hline Delisle (127) ii. & -34 \(4^{8}\) & N 2959 & Proclus (60) i . & \(+4630\) & N 16 \\
\hline Democritus (38) & +33 30 & N 62 & Prom. Agarum. (r) i. & +64 11 & \(\mathrm{N}_{13}\) \\
\hline Dionysius (99) i. & +17 & N 251 & Pythagoras (176) ii. & \(\begin{array}{ll}-62 & 15\end{array}\) & N 63 \\
\hline Dollond (303) & +14 16 & S 1014 & & 30 & N 20 \\
\hline Drebbel (240) & -48 13 & S 4047 & Ramsden (228) & -31 42 & 3226 \\
\hline Eichstädt (280) & -70 27 & S 2031 & Reiner (146) ii. & -56 & N 7 \\
\hline Eimmart (3) i. & +62 50 & \(\mathrm{N}^{2} 335\) & Reinhold (II4) ii. & -22 37 & \begin{tabular}{l}
N \\
\hline
\end{tabular} \\
\hline Encke (143) ii. & -36 37 & N 418 & Sacrobosco (312) iv. & +16 & S 2419 \\
\hline Eratosthenes & II 37 & N 1424 & Scheiner (A) [26I] iii. & 36 & S 5958 \\
\hline Fuclides (221) & 2925 & S 711 & Schubert (A) [ro] i. & +77 16 & N 228 \\
\hline Euler (125) & -28 \(\quad 54\) & N 23 & Seleucus (162) ii. & -65 48 & N 2054 \\
\hline Fabricius (383) & +40 46 & S 42 & Taruntius (326) & +45 59 & N 540 \\
\hline Franklin (32) i. & +47 12 & \begin{tabular}{l}
N 38 \\
S \\
\hline
\end{tabular} & Thales (36) i. . & +49 12 & N 6158 \\
\hline Flamsteed (223) iii. & 44 & S \(43^{1}\) & Theophilus (359) iv. & +26 18 & S II 21 \\
\hline Gassendi (232) iii. & -39 3I & S 1657 & Timocharis (12I) ii. & - 1 & N 2643 \\
\hline Goclenius (328) iv. & +44 29 & S 10 0 & Tobias Mayer (\(\mathrm{IJ}_{\text {7 }}\)) ii. & -28 50 & N15 33 \\
\hline Grimaldi (272) iii. & -68 \(5^{8}\) & S 243 & Tycho (180) iii. & - 1152 & S \(42{ }^{2}\) \\
\hline Hansen (A) [II] i. & +74 ○ & N 1317 & Ukert (109) i. & + & N 748 \\
\hline Harding (152) ii. & \(-70 \quad 52\) & N43 9 & Vitello (229) iii. & 3712 & S 30 \\
\hline Helicon (129) ii. & 2253 & N40 10 & Vitruvius (57) i. & 3I & \(\begin{array}{lll}\mathrm{N} 17 & 36\end{array}\) \\
\hline Hell (184) iii. & 20 & S 3I 59 & Werner (295) iv. & + 3 & S 2730 \\
\hline Heraclides (135) ii. & -31 & N 41 & Wichmann (438) iii. & -37 56 & S 741 \\
\hline Hercules (29) i. & +38 & \({ }_{\text {N }}{ }^{46}\) & Wollaston (150) ii. & -46 54 & N \(30-17\) \\
\hline Herschel (212) iii. & -29 & S \(5 \quad 37\) & & +21 56 & S \(3^{1} 42\) \\
\hline
\end{tabular}

\footnotetext{
\(\mathrm{I}^{\prime \prime}\) of arc at the mean distance of the Moon is equal to \(\mathrm{I}^{\circ} 14\) miles.
\(x^{\circ}\) of selenographical longitude or latitude at the centre of the Moon is equal to \(16^{\prime \prime} .6\) of are, or \(18^{\circ} 9\) miles.
}

\section*{LUNAR CRATERS IN ORDER OF SELENOGRAPHICAL LONGITUDE.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Longitude
\[
+=\text { West }
\] & Name of Crater & \begin{tabular}{l}
Latitude \\
\(\mathrm{N}=\) North
\[
S=\text { South }
\]
\end{tabular} & Longitude
- = East & Name of Crater & \[
\begin{aligned}
& \text { Latitude } \\
& \text { N=North } \\
& \text { S }=\text { Nouth }
\end{aligned}
\] \\
\hline +77 16 & Schubert (A) [ro] i. & N 228 & \({ }^{2} \quad 9^{\circ}\) & Herschel (212) iii. & S 5 \\
\hline 74 & Hansen (A) [II] i. . & \begin{tabular}{l}
N \\
13 \\
\hline
\end{tabular} & 239 & Bode (107) ii. . & N 637 \\
\hline 64 11 & Prom. Agarum. (x) i. & N13 54 & 314 & Alphonsus (207) iii. & S 1259 \\
\hline 6250 & Eimmart (3) i. & N 2335 & 445 & Alpetragius (205) iii. & S 1555 \\
\hline 6030 & Langrenus (338) iv. & \(\begin{array}{llll}\text { S } & 8 & 33\end{array}\) & 554 & Mösting (2II) iii. & S \(03^{6}\) \\
\hline 5947 & Petavius (340) iv. & S 2450 & \(7 \quad 9\) & Moretus (262) iii. & S 6945 \\
\hline 54.47 & Cleomedes (12) i. & N 2650 & II & Archimedes (A) [120] ii. & \({ }_{\text {N }} 2745\) \\
\hline \(53 \quad 52\) & Picard (4) i. . & N 1428 & 8 8 20 & Hell (184) iii. & S 3159 \\
\hline 4912 & Thales (36) i. & N 61.58 & 46 & Lalande (2io) iii. & S 427 \\
\hline \(47 \quad 12\) & Franklin (32) i. & N 3839 & 12 & Pico (13I) ii. & N 4528 \\
\hline \(\begin{array}{ll}47 & 12 \\ 46 & 30\end{array}\) & Messier (327) iv. & \(\begin{array}{lll}\text { S } & 1 & 57 \\ N & 56 \\ \text { IO }\end{array}\) & \(\begin{array}{ll}\text { II } & 37 \\ \text { II } & 52\end{array}\) & Eratosthenes (110) ii. & \(\begin{array}{lll}\mathrm{N} & 14 \\ \mathrm{~N} & 24 \\ \mathrm{~S} & 42 \\ \mathrm{~N} & \\ \mathrm{~N}\end{array}\) \\
\hline \(\begin{array}{ll}46 & 30 \\ 45 & 59\end{array}\) & Proclus (60) i. & (\begin{tabular}{l}
N \\
N \\
N \\
\hline
\end{tabular} & \(\begin{array}{cr}11 & 5 \\ 13 & 5 \\ 13 & 0\end{array}\) & Tycho (180) iii. \({ }_{\text {Timocharis (}}^{\text {T2I) }}\) ii. & \begin{tabular}{lll}
S & 42 & 52 \\
N 26 & \\
\hline
\end{tabular} \\
\hline \(\begin{array}{ll}45 & 59 \\ 45 & 40\end{array}\) & Taruntius (326) i. & N \begin{tabular}{r}
5 \\
N \\
Na \\
\hline 10 \\
59
\end{tabular} & \(\begin{array}{ll}13 & 0 \\ 17 & 0\end{array}\) & Timocharis (121) ii. \({ }_{\text {iid }}\) & \begin{tabular}{l}
N 2643 \\
S 26 \\
\hline
\end{tabular} \\
\hline \(44 \quad 29\) & Goclenius (328) & S 100 & 20 & Copernicus (Iİ) ii. . & N 9 21 \\
\hline 4143 & Argelander (467) iv. & S 4546 & 2030 & Pytheas (124) ii. & N 2014 \\
\hline 4046 & Fabricius (383) iv. . & S 428 & 22 & Bullialdus (213) iii. & S 2030 \\
\hline 3945 & Neander (373) iv. & S 3110 & \(22 \quad 37\) & Reinhold (ri4) ii. & N 313 \\
\hline \(38 \quad 2\) & Hercules (29) i. & N 46 & 2253 & Helicon (129) ii. & N 4010 \\
\hline \(344^{8}\) & Capella (324) iv. & S 7133 & 24 & Carlini (128) ii. & N 3330 \\
\hline \(34 \quad 33\) & Beer (446) iv. & S 1748 & 25 10 & La Hire (r23) ii. & N 2718 \\
\hline \(33 \quad 30\) & Democritus (38) i.. & N 628 & \(25 \quad 42\) & Capuanus (238) iii. & S 3420 \\
\hline \(32 \quad 22\) & Censorinus (325) iv. & \(\begin{array}{lll}\text { S } & 0 & 27\end{array}\) & 2620 & Landsberg (222) iii. & S 027 \\
\hline \(\begin{array}{ll}3 \mathrm{I} & 45\end{array}\) & Piccolomini (371) iv. & S 29 II & 25 & Laplace (A) [134] ii. & \(\stackrel{\text { N }}{\mathrm{S}} 4316\) \\
\hline 31 & Vitruvius (57) i. & N \(173^{6}\) & \(26 \quad 36\) & Scheiner (A) [26I] iii. & S 5958 \\
\hline 2940 & Maskelyne (67) i. & \(\begin{array}{llll}\mathrm{N} & 2 & 32 \\ \mathrm{~S} & 6\end{array}\) & 27
27 & Campanus (226) iii. & S 2737 \\
\hline \(29 \quad 22\) & Mutus (400) iv. & S 636 & \(28 \quad 50\) & Tobias Mayer (117) ii. & N 1533 \\
\hline \(29 \quad 12\) & Mädler (466) iv. & S 1056 & \(\begin{array}{ll}28 & 54 \\ \end{array}\) & Euler (125) ii. & N 236 \\
\hline 29 II & Posidonius (A) [54] i. & N 3133 & 2925 & Euclides (221) iii. & S 711 \\
\hline 29 & Le Monnier (A) [53] i. & N 26 & 2940 & Milichius (118) & N 10 o \\
\hline \(27 \quad 32\) & Burg (50) i. & N 4457 & 31 & Heraclides (\(\mathbf{3} 5\)) ii. & \(\mathrm{N}_{4} 18\) \\
\hline 2618 & Theophilus (319) iv. & S
II & 3142 & Ramsden (228) iii. . & S 3226 \\
\hline 2430 & Lindenau (370) iv. . & S 3152 & \begin{tabular}{ll}
34 & 48 \\
\hline
\end{tabular} & Delisle (I27) ii. & N 2959 \\
\hline \(23 \quad 23\) & Plinius (6x) i. . & & \(\begin{array}{ll}36 & 37\end{array}\) & Encke (143) ii. & N 418 \\
\hline \(21 \quad 56\) & Zagut (369) iv. & S \(3^{1} 42\) & \(36 \quad 52\) & Brayley (479) ii. & N 2054 \\
\hline \(17 \quad 29\) & Delambre (301) iv. . & S 2 & \(37 \quad 4\) & Bessarion (y 45) ii. & \(\begin{array}{lll}\mathrm{N} 14 & \\ \text { 2 }\end{array}\) \\
\hline \(17 \quad 22\) & Bessel (73) i. & N 2154 & \begin{tabular}{ll}
37 & 12 \\
\hline
\end{tabular} & Vitello (229) iii. & S 30 \\
\hline 17 & Dionysius (99) i. & \begin{tabular}{l}
N \\
S \\
N \\
\hline
\end{tabular} & 3740 & Kepler (144) ii. & N 751 \\
\hline 16 & Sacrobosco (312) iv. & S
N
24 & \(37 \quad 56\) & Wichmann (438) iii. & S 741 \\
\hline \(15 \quad 31\) & Menelaus (70) i. & N 1624 & 39 31 & Gassendi (232) iii. & S 1657 \\
\hline 14 & Dollond (303) iv. & S 10 14 & \(\begin{array}{ll}44 & 12 \\ 46 & 54\end{array}\) & & \\
\hline \(\begin{array}{ll}11 & 33 \\ 10 & 29\end{array}\) & Linne (74) i. \({ }_{\text {Calippus }}(76) \mathrm{i}\). & & & Wollaston (150) ii. & \begin{tabular}{l}
N 30 \\
N 23 \\
N \\
c \\
\hline
\end{tabular} \\
\hline \(\begin{array}{ll}10 & 29 \\ \text { 10 } & 22\end{array}\) & Calippus (76) i. & \begin{tabular}{c}
N \\
N \\
\hline 8 \\
N \\
4
\end{tabular} \(4^{6}\) & \(\begin{array}{ll}47 & 10 \\ 48 & 13\end{array}\) & Aristarchus (148) ii.
Drebbel (240) iii. & N 23
S 32
S
S \\
\hline 847 & Manilius (95) i . & N 1427 & \(49 \quad 58\) & Billy (266) iii. . & \(\mathrm{S}_{14} \mathrm{O}\) \\
\hline 622 & Hyginus (93) i. & N 82 & 50 & Marius (147) ii. & N II 50 \\
\hline 54 & Airy (291) iv. & S 1746 & 56 & Reiner (I46) ii. & N 76 \\
\hline 13 & Archytas (46) i. & N 5824 & 62 15 & Pythagoras (176) ii. & N 636 \\
\hline 9 & Cassini (A) [8I] i. . & N 4033 & 6548 & Seleucus (162) ii. & N 20
S
50 \\
\hline \(35^{8}\) & Albategnius (289) iv. & S 11 21 & 6640 & Crüger (278) iii. & S 1648 \\
\hline 57 & Werner (295) iv. & S 2730 & 67
68 & Lichtenberg (151) ii. & \(\mathrm{N}_{31}{ }^{25}\) \\
\hline 57 & Conon (88) i. & N 2131 & \(\begin{array}{ll}68 & 58\end{array}\) & Grimaldi (272) iii. & S 243 \\
\hline I 9 & Ukert (ro9) i. . & N \(7{ }^{\text {N }} 48\) & 70
70
70 & Eichstädt (280) iii. & S 2031 \\
\hline I I & Aristillus (83) i. & N 3345 & \begin{tabular}{ll}
70 & 52 \\
\hline
\end{tabular} & Harding (152) ii. & N 439 \\
\hline \(+\) & Murchison (A) [483] i. & N 4 & -77 & Olbers (159) ii. & N 755 \\
\hline
\end{tabular}

\section*{SEPARATING POWER OF TELESCOPES.}

Dawes (Memoirs of the Royal Astronomical Society, volume xxxv. p.158) found by a great variety of experiments with small telescopes that a one-inch aperture would just separate a double star composed of two stars of the sixth magnitude if their central distance was \(4^{\prime \prime}{ }^{\circ} 56\), when the atmospheric circumstances were moderately favourable. The following little table, as calculated by him, will be convenient for reference.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Aperture in Inches & Least separable Distance & Aperture in Inches & Least separable Distance & Aperture in Inches & Least separable Distance \\
\hline I'O & \(4: 56\) & \(4^{\circ}\) & \(\mathrm{I}^{\prime \prime} 14\) & \(7{ }^{\circ}\) & 0.165 \\
\hline 1.5 & 3.04 & 4.5 & ror & 8\% & 0.57 \\
\hline \(2 \cdot 0\) & \(2 \cdot 28\) & \(5^{\circ}\) & 0.91 & \(9{ }^{\circ}\) & 0.507 \\
\hline 2.5 & I-82 & \(5 \cdot 5\) & 0.83 & \(10^{\circ}\) & \(0 \cdot 456\) \\
\hline \(3^{\circ} \mathrm{O}\) & 1.52 & 6.0 & \(0 \cdot 76\) & 110 & 0.414 \\
\hline 3.5 & 130 & \(6 \cdot 5\) & \(0 \cdot 70\) & \(12^{\circ} \mathrm{O}\) & 0.380 \\
\hline
\end{tabular}

\section*{SPACE-PENETRATING POWER OF TELESCOPES.}

The following table, based on the assumption that a star of any magnitude contains \(2 \frac{1}{2}\) times the light of one of the magnitude next below, is taken from Newcomb and Holden's Astronomy, \(4^{\text {th }}\) edition, page 419. This is practically Struve's ratio.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Aperture in Inches & Faintest Star Visible & Aperture in Inches & Faintest Star Visible & Aperture in Inches & Faintest Star Visible \\
\hline & Mag. & & Mag. & & Mag. \\
\hline I'O & \(9^{\circ}\) & \(4^{\circ} \mathrm{O}\) & \(12{ }^{\circ}\) & \(7{ }^{\circ}\) & \(13 \cdot 3\) \\
\hline 1'5 & \(9 \times 9\) & 4.5 & 12.3 & 8\% & 13.5 \\
\hline \(20^{\circ}\) & 10.5 & \(5^{\circ} \mathrm{O}\) & 12.5 & \(9^{\circ}\) & 13.8 \\
\hline \(2 \cdot 5\) & 110 & \(5 \cdot 5\) & \(12 \cdot 7\) & \(10^{\circ}\) & \(14^{\circ} \mathrm{O}\) \\
\hline \(3^{\circ} 0\) & 11.4 & 6.0 & 12.9 & 110 & \(14^{\circ} 2\) \\
\hline 3.5 & 117\% & \(6 \cdot 5\) & 13.1 & \(12{ }^{\circ}\) & \(14 \%\) \\
\hline
\end{tabular}

\section*{APPENDIX.}

\section*{Heliocentric Minima of \(\beta\) Persei (Algol) \(3^{\mathrm{b}} 0^{\mathrm{m}} 45^{\mathrm{s}}+40^{\circ} 31^{\prime} 0\).}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Days hrs. min.} & \multicolumn{4}{|r|}{Days hrs. min.} & \multicolumn{4}{|r|}{Days hrs. min.} & \multicolumn{4}{|l|}{Days hrs. min.} \\
\hline 1886, Jan. 1 & & 14 & 23 & March & & 5 & 3 & August & & 15 & 30 & October & 24 & II & 4 \\
\hline & 16 & 11 & 12 & & & 13 & 7 & & 19 & 12 & 19 & & 27 & 7 & 53 \\
\hline & 19 & 8 & I & & & 9 & 56 & & 22 & 9 & 8 & November & 13 & 12 & 46 \\
\hline & 22 & 4 & 50 & April & & 14 & 50 & September & 8 & 14 & 1 & & 16 & 9 & 35 \\
\hline February & 5 & 12 & 55 & & & 1 & 39 & & II & 10 & 50 & & 19 & 6 & 24 \\
\hline & 8 & 9 & 43 & 1 & & 8 & 27 & & 14 & 7 & 39 & December & 3 & 14 & 28 \\
\hline & 11 & 6 & 32 & July & & 12 & 6 & October & 1 & 12 & \(3^{2}\) & & 6 & II & 17 \\
\hline & 25 & 14 & 36 & & & 8 & 55 & & 4 & 9 & 21 & & 9 & 8 & 6 \\
\hline & 28 & II & 25 & & & 3 & 29 & & 7 & 6 & 10 & & 26 & 12 & 59 \\
\hline March & 3 & 8 & 14 & & & 10 & 37 & & 2 I & 14 & 15 & & 29 & 9 & 48 \\
\hline
\end{tabular}

Algol, 2.2 mag. at maximum, 3.7 at minimum. It commences to diminish in light 4 hours 23 minutes before minimum, and regains its full brilliancy 5 hours and 37 minutes after. The most rapid decrease of light begins at 1 hour 40 minutes before the minimum, and the most rapid increase \(x\) hour 40 minutes after.

Heliocentric Minima of \(\delta\) Libre \(14^{\mathrm{h}} 54^{\mathrm{m}} 53^{\prime}-8^{\circ} 3^{\prime} \cdot 9 . \quad 4 \cdot 9\) mag. max. 6.1 mag. min.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{R.A.} & \multirow[t]{2}{*}{Decl.} & \multicolumn{2}{|l|}{Magnitudi} & \multicolumn{2}{|l|}{Ephemeris (888)} & \multirow[t]{2}{*}{Notrs and Colours} \\
\hline & & & Maximum & Minimum & Maximum & Minimum & \\
\hline R. Andromedm . & & \(+37^{\circ} 56^{\prime} \cdot 7\) & 5'6-8.6 & Below 13 & February o & September \(\mathrm{I} \quad\{\) & The minimum is derived from Schmidt's observations in 1883. Schönfeld gives maximum December 23, 1885 . \\
\hline R. Arietis & 938 & +24 \(3{ }^{1} 5\) & 76-8.6 & 12.3 & February 6, August II & \[
\left\{\begin{array}{c}
\text { November 10 }\left(\text { r }_{285}\right), \\
\text { May } 15, \text { Nov. } 17
\end{array}\right\}
\] & Close to the 6th mag. star 21 Arietis. \\
\hline - Ceti (Mira) & 1335 & \(-3297\) & 177-5 & 8-9.5 & January 5 & August 15 & Very red near minimum, a blue \(9^{\circ} 5\) mag. at \(83^{\circ}: 116^{\prime \prime}\). \\
\hline R. Leporis & \(4 \quad 54 \quad 25\) & \(-\mathrm{x} 4 \quad 58.7\) & \(6 \%\) & 8.5 & December 12 & April 26 \{ & Hind's scarlet star. Irregular. In 1883 the maxima and minima took place 8 weeks before the predicted times. \\
\hline S. Orionis & \(23 \quad 23\) & - \(44^{\circ}{ }^{\circ}\) & 8.5 & Below 13 & November 1 & April 15 & Very red. Period rather uncertain. \\
\hline R. Leonis & 94126 & +11 574 & 5.2-6.4 & 94-10 & \[
\left\{\begin{array}{c}
\text { November } 9(\mathrm{r} 885),\} \\
\text { September } 18
\end{array}\right\}
\] & April 23 & Very red. \\
\hline R. Ursw Maj. & 10 \(\begin{aligned} & 36 \\ & 34\end{aligned}\) & +69 22.4 & \(6 \cdot x-8 \cdot x\) & 13.4 & May II & January 28 & Orange. \\
\hline R. Virginis & \(\begin{array}{lll}12 & 32 & 43\end{array}\) & + \(737^{\circ}\) & 6.5-7.5 & 10-10.9 & \(\left\{\begin{array}{l}\text { November } 15 \text { (} 1885 \text {), } \\ \text { April 9, September } 2\end{array}\right\}\) & \[
\left\{\begin{array}{c}
\text { January 3x, June } 25, \\
\text { November } 18
\end{array}\right\}
\] & Reddish at maximum, deeper at minimum, like many other variables. \\
\hline R. Hydre & \(\begin{array}{llll}13 & 23 & 30\end{array}\) & -22 \(41 \times\) & \(4-5 \cdot 5\) & \(10 \cdot 5\) & November 2 & April 16 & Red. P. xiii. 94. \\
\hline R. Aquileo & 19 - 53 & + 835 & 6.4-7'4 & 11/2 & May 11 & November 21 & Reddish. \\
\hline \({ }^{*}\) Cygni & \(\begin{array}{llll}19 & 4^{6} & \text { II }\end{array}\) & \(+32376\) & \(4^{\circ} \mathrm{O}-6.0\) & 12.8 & January 8 & July 19 & \(x\) of Bayer, not \(x\) of Flamsteed. Fine red. \\
\hline T. Cephei & 2188 & +68 1.6 & 6.4 & 9.8 & March 13 & September 20 & Reddish. \\
\hline
\end{tabular}

POSITION OF THE LUNAR TERMINATOR (MIDNIGHT).
```

$+=W$. Longitude ; $\mathrm{M}=$ Morning Terminator, or Sun-rising.
$\pm=\mathrm{E}$. Longitude $; \mathrm{E}=$ Evening Terminator, or Sun-setting.

```
1885.

\begin{tabular}{rrr}
January \(1-47\) & 42 E \\
\(2-59\) & 52 E \\
\(3-72\) & 2 E \\
\(4-84\) & 11 E \\
5 New & Moon \\
\(6+7 \mathrm{I}\) & 31 M \\
\(7+59\) & 21 M \\
\(8+47\) & 11 M \\
\(9+35\) & 2 M \\
\(10+22\) & 52 M \\
\(11+10\) & 44 M \\
\(12-1\) & 26 M \\
\(13-13\) & 35 M \\
\(14-25\) & 45 M \\
\(15-37\) & 55 M \\
\(16-50\) & 5 M \\
\(17-62\) & 14 M \\
\(18-74\) & 23 M \\
19 Full & Moon \\
\(20+8 \mathrm{r}\) & 18 E \\
\(21+69\) & 8 E \\
\(22+56\) & 59 E \\
\(23+44\) & 49 E \\
\(24+32\) & 39 E \\
\(25+20\) & 29 E \\
\(26+8\) & 9 E \\
\(27-3\) & 49 E \\
\(28-15\) & 59 E \\
\(29-28\) & 8 E \\
\(30-40\) & 18 E \\
\(31-52\) & 28 E \\
1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline February & \(4+78\) & 54 M & March & \(10+25\) & 4 M & April & 13-29 & 19 M \\
\hline & \(5+66\) & 43 M & & \(11+12\) & 54 M & & 14-41 & 30 M \\
\hline & \(6+54\) & 33 M & & \(12+0\) & 42 M & & 15-53 & 42 M \\
\hline & \(7+42\) & 23 M & & \(13-11\) & 28 M & & 16-65 & 54 M \\
\hline & \(8+30\) & 14 M & & 14-23 & 39 M & & 17-78 & 4 M \\
\hline & \(9+18\) & 4 M & & 15-35 & 49 M & & 18 Full & Moon \\
\hline & \(10+5\) & 54 M & & 16-48 & r M & & \(19+77\) & 30 E \\
\hline & 11-6 & 15 M & & 17-60 & 12 M & & \(20+65\) & \({ }_{17} \mathrm{E}\) \\
\hline & 12-18 & 26 M & & 18-72 & 22 M & & \(21+53\) & 7 E \\
\hline & 13-30 & 35 M & & 19 Full & Moon & & \(22+40\) & 53 E \\
\hline & 14-42 & 46 M & & \(20+83\) & 16 E & & \(23+28\) & 4 E \\
\hline & 15-54 & 56 M & & \(21+71\) & 5 E & & \(24+16\) & 29 E \\
\hline & 16-67 & 6 M & & \(22+58\) & 54 E & & \(25+4\) & 17 E \\
\hline & 17-79 & 15 M & & \(23+46\) & 42 E & & 26-7 & 56 E \\
\hline & 18 Full & Moon & & \(24+34\) & 32 E & & 27-20 & 8 E \\
\hline & \(19+76\) & 24 E & & \(25+22\) & 20 E & & 28-32 & 21 E \\
\hline & \(20+64\) & 14 E & & \(26+10\) & 10 E & & 29-44 & 32 E \\
\hline & \(21+52\) & 3 E & & 27-2 & 2 E & & 30-56 & 45 E \\
\hline & \(22+39\) & 53 E & & 28-14 & 13 E & May & I-68 & 57 E \\
\hline & \(23+27\) & 42 E & & 29-26 & 24 E & & 2-81 & 10 E \\
\hline & \(24+15\) & 32 E & & \(30-38\) & 36 E & & 3 New & Moon \\
\hline & \(25+3\) & 22 E & & \(3 \mathrm{x}-50\) & 48 E & & 4+74 & 26 M \\
\hline & 26-8 & 49 E & April & 1-62 & 59 E & & \(5+62\) & 13 M \\
\hline & 27-20 & 59 E & & 2-75 & 9 E & & \(6+50\) & 1 M \\
\hline & 28-33 & 10 E & & 3-87 & 20 E & & \(7+37\) & 48 M \\
\hline March & 1-45 & 20 E & & 4 New & Moon & & \(8+25\) & 36 M \\
\hline & 2-57 & 3r E & & 5+68 & 15 M & & \(9+13\) & 24 M \\
\hline & 3-69 & 41 E & & \(6+56\) & 3 M & & \(10+1\) & 10 M \\
\hline & 4-81 & 52 E & & \(7+43\) & 52 M & & II-II & 2 M \\
\hline & 5 New & Moon & & \(8+3 \mathrm{I}\) & 40 M & & 12-23 & 14 M \\
\hline & \(6+73\) & 47 M & & \(9+19\) & 29 M & & 13-35 & 28 M \\
\hline & \(7+61\) & 36 M & & \(10+7\) & 17 M & & 14-47 & 4 M \\
\hline & \(8+49\) & 26 M & & II-4 & 54 M & & 15-59 & 53 M \\
\hline & \(9+37\) & 15 M & & 12-17 & 6 M & & 16-72 & 6 M \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Days} & Days
\(14-73\) & \(6{ }^{6} \mathrm{M}\) & Days \({ }^{\circ}\)
September \(9-49\) & \(21^{1} \mathrm{M}\) & \multicolumn{2}{|l|}{Days 。} \\
\hline \(18+83^{\circ}\) & \(28^{\prime} \mathrm{E}\) & 15 Full & Moon & 10-61 & 34 M & 6-36 & 15 M \\
\hline \(19+71\) & 15 E & \(16+82\) & 27 E & 11-73 & 46 M & 7-48 & 25 M \\
\hline \(20+59\) & 3 E & \(17+70\) & 14 E & 12-85 & 58 M & 8-60 & 36 M \\
\hline \(21+46\) & 49 E & \(18+58\) & - E & 13 Full & Moon & 9-72 & 46 M \\
\hline \(22+34\) & 37 E & \(19+45\) & \(4^{8} \mathrm{E}\) & \(14+69\) & \(3^{8} \mathrm{E}\) & 10-84 & 57 M \\
\hline \(23+22\) & 24 E & \(20+33\) & 36 E & \(15+57\) & 25 E & 11 Fall & Moon \\
\hline \(24+10\) & 11 E & \(2 \mathrm{I}+2 \mathrm{I}\) & 23 E & \(16+45\) & 14 E & \(12+70\) & 44 E \\
\hline 25-2 & 2 E & \(22+9\) & 8 E & \(17+33\) & 1 E & \(13+58\) & 35 E \\
\hline 26-14 & 16 E & 23-3 & 6 E & \(18+20\) & 50 E & \(14+46\) & 24 E \\
\hline 27-26 & 28 E & 24-15 & 19 E & \(19+8\) & 38 E & 15+34 & 13 E \\
\hline 28-38 & 4 I E & 25-27 & 32 E & 20-3 & 34 E & \(16+22\) & 4 E \\
\hline 29-50 & 54 E & 26-39 & 45 E & 21-15 & 46 E & \(17+9\) & 52 E \\
\hline 30-63 & 7 E & 27-51 & 59 E & 22-27 & 58 E & 18-2 & \({ }_{7} \mathrm{E}\) \\
\hline \(3 \mathrm{x}-75\) & 21 E & 28-64 & 12 E & 23-40 & 9 E & 19-14 & \({ }_{27} \mathrm{E}\) \\
\hline June \(1-87\) & 33 E & 29-76 & 25 E & 24-52 & 22 E & 20-26 & 37 E \\
\hline 2 New & Moon & 30 New & Moon & 25-64 & 33 E & \(2 \mathrm{x}-3^{8}\) & 47 E \\
\hline \(3+68\) & - M & \(3 \mathrm{x}+79\) & 9 M & 26-76 & 45 E & 22-50 & 56 E \\
\hline 4+55 & 47 M Augus & I \(1+66\) & 55 M & 27 New & Moon & 23-63 & 7 E \\
\hline 5+43 & 34 M & \(2+54\) & 42 M & \(28+78\) & 52 M & 24-75 & 16 E \\
\hline \(6+3 \mathrm{I}\) & 21 M & \(3+42\) & 29 M & \(29+66\). & 41 M & 25 New & Moon \\
\hline 7+19 & 7 M & \(4+30\) & 16 M & \(30+54\) & 29 M & \(26+80\) & 23 M \\
\hline \(8+6\) & 55 M & 5+18 & 3 M & October \(\mathrm{I}+42\) & 17 M & \(27+68\) & \({ }^{4} 4 \mathrm{M}\) \\
\hline 9-5 & 19 M & \(6+5\) & 50 M & \(2+30\) & 6 M & \(28+56\) & 4 M \\
\hline 10-17 & 33 M & \(7-6\) & 23 M & \(3+17\) & 54 M & \(29+43\) & 55 M \\
\hline II-29 & 46 M & 8-18 & 36 M & \(4+5\) & 41 M & \(30+31\) & 45 M \\
\hline 12-41 & 59 M & 9-30 & 49 M & 5-6 & 29 M & December \(\mathrm{I}+19\) & 35 M \\
\hline 13-54 & 13 M & 10-43 & 3 M & 6-18 & 40 M & \(2+7\) & 25 M \\
\hline 14-66 & 26 M & 11-55 & 15 M & 7-30 & 52 M & 3-4 & 45 M \\
\hline \(15-78\) & 39 M & 12-67 & 27 M & 8-43 & 5 M & 4-16 & 55 M \\
\hline 16 Full & Moon & 13-79 & 40 M & 9-55 & 14 M & 5-29 & 4 M \\
\hline \(17+76\) & 54 E & 14 Full & Moon & 10-67 & 25 M & 6-41 & 14 M \\
\hline \(18+64\) & 40 E & \(15+75\) & 54 E & 11-79 & 36 M & 7-53 & 24 M \\
\hline \(19+52\) & 27 E & \(16+63\) & 41 E & 12 Full & Moon & 8-65 & 34 M \\
\hline \(20+40\) & 15 E & \(17+51\) & 28 E & \(13+76\) & 12 E & 9-77 & 42 M \\
\hline \(2 \mathrm{I}+28\) & 1 E & \(18+39\) & 16 E & \(14+64\) & - E & 10 Full & Moon \\
\hline \(22+15\) & 46 E & \(19+27\) & 1 E & \(15+51\) & 48 E & \(11+77\) & 59 E \\
\hline \(23+2\) & 35 E & \(20+14\) & 49 E & \(16+39\) & 28 E & \(12+65\) & 49 E \\
\hline 24-8 & 39 E & \(21+2\) & 36 E & \(17+27\) & 17 E & \(13+53\) & 39 E \\
\hline 25-20 & 53 E & 22-9 & 36 E & \(18+15\) & 6 E & \(14+41\) & 30 E \\
\hline 26-33 & 6 E & 23-21 & 49 E & \(19+2\) & 55 E & \(15+29\) & 20 E \\
\hline 27-45 & 20 E & 24-34 & 1 E & 20-9 & 16 E & \(16+17\) & Ir E \\
\hline 28-57 & 33 E & 25-46 & 14 E & 21-21 & 27 E & \(17+5\) & 1 E \\
\hline 29-69 & 45 E & 26-58 & 27 E & 22-33 & 37 E & 18-7 & 8 E \\
\hline 30-81 & 59 E & 27-70 & 39 E & 23-45 & 47 E & 19-19 & 17 E \\
\hline July 1 New & Moon & \(28-82\) & 52 E & 24-57 & 58 E & 20-3 \({ }^{\text {r }}\) & 26 E \\
\hline \(2+73\) & 35 M & 29 New & Moon & 25-70 & 10 E & 21-43 & 36 E \\
\hline \(3+61\) & 22 M & \(30+72\) & 43 M & 26-82 & 21 E & 22-55 & 46 E \\
\hline \(4+49\) & 7 M & \(3 \mathrm{I}+60\) & 30 M & 27 New & Moon & 23-67 & 55 E \\
\hline \(5+36\) & 54 M September & \(\mathbf{1}+48\) & 17 M & \(28+73\) & 18 M & 24-80 & 5 E \\
\hline \(6+24\) & 42 M & \(2+36\) & 5 M & \(29+6\) I & 8 M & 25 New & Moon \\
\hline \(7+12\) & 29 M & \(3+23\) & 52 M & \(30+48\) & 57 M & \(26+75\) & 36 M \\
\hline \(8+0\) & 14 M & 4+11 & 40 M & \(3 \mathrm{I}+3^{6}\) & 46 M & \(27+63\) & 27 M \\
\hline 9-12 & - M & 5-0 & 32 M & November \(\mathrm{I}+24\) & 36 M & \(28+51\) & 18 M \\
\hline 10-24 & 13 M & 6-12 & 45 M & \(2+12\) & 25 M & \(29+39\) & 9 M \\
\hline 11-36 & 27 M & 7-24 & 57 M & \(3+0\) & 14 M & \(30+26\) & 59 M \\
\hline 12-48 & 39 M & 8-37 & ro M & 4-II & 54 M & \(3^{x+14}\) & 49 M \\
\hline
\end{tabular}

\section*{THE COMETS OF 1886.}

Three periodical comets are expected to return to perihelion in the year 1886. These are (1) a comet having a period of about \(5 \frac{1}{2}\) years, which was discovered by Tempel at Florence in November 1869 . The return in 1875 was not observed, but it was re-discovered by Prof. L. Swift, of Rochester, New York, in October 1880, when the fact of its periodicity was determined. Perihelion passage will take place about April 21 , 1886, but its position in the heavens will be very unfavourable for observation, and it is not likely to be seen again until its next return in October 189 I .
(2) A comet, first discovered by Pons at Marseilles in June 1819, which is also moving in an ellipse with a period of about \(5 \frac{1}{2}\) years. It was re-discovered by Dr. Winnecke in 1858 , and its periodicity was then determined by him. It was well observed in 1869 and 1875, but not in 1864 and 1880, when the circumstances were unfavourable. It is usually known as Winnecke's comet. Perihelion passage will take place about August 30, 1886.
(3) A comet of long period, discovered by Olbers in March \(18{ }_{15} 5\), is expected to return again to perihelion towards the end of 1886 . It will probably be bright enough to be generally observed. A sweeping ephemeris from January to October 1886 has been published by Dr. Ginzel in No. 2,696 of the Astronomische Nachrichten.

Three comets, discovered in 1885 , are visible at the present time. They are :-
(r) A comet discovered by Mr. Brooks, of Phelps, New York, at the end of December 1885. This comet passed its perihelion on November 24, 1885, and is slowly receding from the earth, and growing fainter.
(2) A comet discovered by M. Fabry at the Paris Observatory on December I, 1885. This comet is only observable with large telescopes. Perihelion passage, according to the elements calculated by Dr. Oppenheim, will take place on April 4, 1886. The brightness is slowly increasing at present.
(3) A comet discovered by Mr. Barnard, at the Vanderbilt University Observatory, Nashville, Tennessee, on December 3, 1885. This comet is also very faint Perihelion passage will take place about May 5, 1886. The elements bear some resemblance to those of the second comet of 1785 . Its brightness is slowly increasing at present.

\section*{ADDENDA.}

The orbit of comet Fabry has been recently calculated by several astronomers, including Dr. S. Oppenheim and M. Lebeuf, and it appears from their investigations that this comet, instead of decreasing in brightness, promises to be a very conspicuous object in the circumpolar sky towards the end of April and the beginning of May. According to Dr. Oppenheim its brightness on May 1 will be over six hundred times greater than that at the time of discovery.

The orbit of comet Barnard has also been investigated by Dr. Heppenger, with a somewhat similar result. About the middle of May this comet will be nearly three hundred times brighter than at the date of discovery.

\section*{BROWNING'S ASTRONOMICAL TELESCOPES. \\ }

\section*{ASTRONOMICAL TELESCOPE}

With 3 -inch Achromatic Object-Glass of excellent quality, with brass body, one Terrestrial and two Celestial Eyepieces, in case complete. Guaranteed to be capable of dividing Double-Stars and showing Saturn's Ring and Jupiter's Belts.

Price \&6. 10s.
Catalogue of Astronomical Telescopes sent Free.

\section*{SILVERED GLASS TELESCOPES AND SPECULA. SILVERED GLASS SPECULA, UNMOUNTED. WITHOUT CELLS.}

To meet the wishes of many applicants Mr. John Browning has made arrangements with Mr. With whereby the large stock of Specula, now in the possession of that celebrated artist, may be obtained by those who wish to possess one of Mr. With's Specula, but to do the mounting for themselves. The Specula so available are the choicest reserves and re-touches of Mr. With's productions.

To assist amateurs to the very utmost Mr. Browning will supply warranted planes, finders, eye-pieces, \&c., of his own manufacture, indeed all those parts of the instrument which an amateur cannot as a whole make for himself.

The performance of these Specula will be guaranteed; they will bear a power of 100 to the inch on suitable objects, and under favourable conditions of the atmosphere.
Speculum, \(4 \frac{1}{2}\)-inch diameter about 5 ft . focus, \(£ 2\). ios. ; \(6 \frac{1}{2}\)-inch, about 6 ft . focus, \(£ 5 ; 8 \frac{1}{2}\)-inch, \(£ 8\); \(9_{4}^{\frac{1}{4}}\)-inch, \(£ 12\); 101 \(\frac{1}{4}\)-inch, \(£_{16}\); \(12 \frac{1}{4}\)-inch, \(£_{22}\); 13 -inch, \(£^{25}\).
SILVERED GLASS SPECULA ASTRONOMICAL TELESCOPES, ON ALT-AZIMUTH STANDS.
\(4 \frac{1}{2}\)-inch Speculum, 5 ft . focus, mounted on a stand, which can be changed from alt-azimuth to \(\mathscr{L}\) s. \(d\). parallactic, so that the stars can be followed with one motion, with endless driving screw, and Hook's joint and two eye-pieces, 100 to 200 20 o \(6 \frac{1}{2}\)-inch Speculum, 6 ft . focus, on alt-azimuth stand, with quick and slow fine screw motions, and three eye-pieces, 100 to 450

\section*{Extracts from}
'A Plea for Reflectors,' being a description of the new Astronomical Telescopes, with silvered glass specula, and instructions for using and adjusting them by Joнn Browning, F.R.A.S.-Post free.

\title{
J. H. DALLMEYER, 19 BLOOMSBURY STREET, LONDON, W.C.
}

\author{
INTERNATIONAL EXHIBITION; 1862.
}
"The Highest Award for his excellent Object Glasses and Equatorial Mountings."
PARIS INTERNATIONAL EXHIBITION, 1867*
"The Gold Medal for the best Telescope, and the Silver Medal for the best Photographic Lens."

Report by Order of the Council on Education.
"It is satisfactory to be able to record that the result of a trial by the jurors of the Refracting Astronomical Telescopes is to place Mr. Dallmeyer at the head of the list. The performance, power, and definition of his Equatorial, surpasses that of the other astronomical telescopes."
"J. H. Dallmeyer has been very successful in producing hand telescopes of a superior description ; he exhibits some instruments, the focal lengths of which are only from nine to ten times the diameter of their clear aperture. The performance of these instruments is most excellent."-Iilustrated London News, Oct. 5, 1867 (page 378).

PHILADELPHIA EXHIBITION, 1876.
"Highest Award for Telescopes, Microscopes, Photographic Lenses, and Apparatus."

\section*{PARIS INTERNATIONAL EXHIBITION, 1878.}
"The Cross of the Legion of Honvur and Two Gold Medals." Exhibit: Telescopes, Microscopes, Photographic Lenses, \&c.

\section*{PHOTOHELIOGRAPHS.}

Supplied to the Home and Foreign Governments.

\section*{CENTENNIAL EXHIBITION, PHILADELPHIA, 1876.}
"Some very beautiful sharply defined pictures of the Sun, with interesting groups of Sun spots, are shown, and furnish a very satisfactory proof of the excellent Photoheliographic Apparatus, by means of which they were obtained."-Vide Juror's Report.

> TRANSIT INSTRUMENTS, STAR-SPECTROSCOPES, \&c. Instruments for Stellar Photography.

Descriptive Catalogue of Telescopes, Microscopes, Photographic Lenses, Erc., on application. J. H. DALLMEYER, 19 BLOOMSBURY STREET, LONDON, W.C.

A．J．FROST， 6 Westminster Chambers，Victoria Street，S．W．

\section*{CLARK＇S}

PAT円エエエエエ TRANSIT INSTRUMENTS．

International Inventions Exhibition，1885，Medal awarded．

These Instruments are of high quality，accurately adjusted，and well finished．The base is of cast iron，with large gun－metal levelling screws．The axis is of gun－metal，the trunnions resting on gun－metal bearings ；the altitude or declination circle is silver－plated，and divided into 4 quadrants of 90 degrees＇ with a vernier and spirit level reading to single minutes．It is furnished with a diagonal eye－piece with total reflecting prism，and three spider－web cross－wires，with collimating screws．There are two dark glasses for solar observation，and a delicate striding level is supplied with the Instrument．The optical power of the larger Instrument is sufficient to show the larger stars and planets in full daylight．The illumination of the cross－wires at night is effected by a front reflecting diaphragm，and the Instrument is provided with a candle lantern carried on an adjustable support．The ordınary axial illumination is supplied with the larger Instrument in addition．

\section*{CLARK＇S WINDOW TRANSIT．}

In addition to the above instrument another form can be supplied for the use of amateurs desiring a small portable and easily－adjusted Instrument．This Instrument has been designed for fixing upon a window－sill and requires no special stand．The base is entirely of gun－metal，and is handsomely finished， Price \(\mathrm{ef}^{2} .10 \mathrm{~s} .0 \mathrm{Od}\) ．

\section*{Pamphlet post－free on application．}

\author{
A．J．FROST， 6 Westminster Chambers，London，S．W．
}

\section*{MAWSON \& SWAN'S}

\section*{ASTRONOMICAL TELESCOPE.}

Complete, with Stand and Box, \(£ 5\).
Of superior construction. Is fitted with \(2 \frac{3}{4}\)-inch Object Glass of Best English manufacture. Day and Night Eye-pieces. Highly finished Brass Stand, \&c. Complete in box.

A cheaper form, fitted with Day and Night Eye-pieces, 2-inch Object Glass of good quality, French make, price £2. 15s.

> A very useful Instrument.

\section*{SWAMN 工AMIPS}

FOR

\section*{ASTRONOMICAL TELESCOPES.}

The small \(2 \frac{1}{2}\)-candle Swan Lamp has been most successfully employed for lighting up the Micrometer Scale \&c., in Telescopes in many of the large and most important Observatories.

The four or five-cell modified Leclanché Battery, controlled by a simple switch, answers admirably for this work.

\section*{PORTABLE PRIMARY BATTERIES,}

For working the small Swan Electric Lamps.

Catalogues of Chemical, Photographic, Electrical and Microscopical Apparatus on application.

MAWSON \& SWAN, Mosley Street, Newcastle-on-Tyne.

\section*{THE 'COLLEGE’ TELESCOPE.}

This Instrument has a brass body, with rack and pinion adjustment ; is 38 -in. long and 3 -in in diameter. Mounted on a brass pillar, with horizontal and vertical movements and japanned claw stand. The Day Power is 40-dia., and the Huyghenian Astro Eyepiece magnifies 90 -dia. The latter is fitted with a dark glass.

Price

£5. 5s.

PACKED IN PORTABLE PINE CASE.

Illustrated Catalogue of Astronomical Telescopes, just published; Gratis, on application, or by Post One Stamp.

\section*{HORNE THORNTHWAITE; \& WOOD, 416 STRAND, W.C., AND E. G. WOOD 74 CHEAPSID円, ㅍ.C.}

\section*{W. WRAY, Optician,} MANUFACTURER OF

\section*{ASTRONOMICAL TELESCOPES.}

EQUATORIAL and other MOUNTINGS, EYEPIECES, Ec. \&r.
MICROSCOPE OBJECTIVES AND MICROSCOPES.
PHOTOGRAPHIC LENSES, \&c. \&c. Illustrated Catalogue Free.

LAUREL HOUSE, NORTH HILL, HIGHGATE, LONDON, \(\mathrm{N}_{\mathrm{x}}\)

\section*{WORKS ON THE TRANSIT INSTRUMENT.}

\section*{By LATIMER CLARK, M.I.C.E.}

Crown 8vo. price \(1 s\).

\section*{MANUAL OF THE TRANSIT INSTRUMENT.}

This work gives all the information requisite for taking time by the Transit Instrument. By the aid of the Tables mentioned below, anyone can take transits without any previous knowledge of the subject.

Demy 8vo. cloth \(5 s\).

\section*{a TREATISE ON THE TRANSIT INSTRUMENT}

As applied to the determination of Time.
This work gives a complete description of the Transit Instrument, and the adjustments and corrections required for obtaining accurate time in any part of the world. It forms an excellent practical introduction to the science of astronomy.

Crown 8vo. boards, price \(2 s .6 d\). annually.

\section*{TRANSIT TABLES.}

These Tables, which are published annually, give the transit of about twenty selected stars for every evening in the year in ordinary time, so that in taking time by the Transit Instrument no calculation of any kind is required. They are adapted for use in all parts of the globe.

London: E. \& F. N. SPON, 125 Strand.
New York: 35 Murray Street

\section*{14 DAY USE \\ RETURN TO DESK FROM WHICH BORROWED \\ LOAN DEPT.}

This book is due on the last date stamped below, or on the date to which renewed.
Renewed books are subject to immediate recall.


```

